Experimental Study on Strengthening Root-Soil Composite with Different Root Contents by Using MICP
Auteur(s): |
Xuegui Zheng
Wei Huang Zhijie Tan Huihui Wang Jianfeng Zhu Yi Luo Yuni Zhou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2022, v. 2022 |
Page(s): | 1-8 |
DOI: | 10.1155/2022/3468900 |
Abstrait: |
Microbial induced carbonate precipitation (MICP) in coordination with vegetation protection is a novel technology in the field of slope reinforcement. Urea in MICP can promote vegetation growth and change the root content in the soil. However, existing studies often ignore the influence of MICP on root growth, while root content has a significant impact on the ability of vegetation to cement soil and protect slopes. In this paper, through the laboratory direct shear test, the strength variation characteristics of root-soil composites with different root contents before and after reinforcement were analyzed, and the influence of root content changes on the strength of root-soil composites in the MICP collaborative slope protection project was studied. The results showed that: (1) the strength of the root-soil composite was improved significantly after MICP treatment. When the root content was 1.5%, the maximum strength peak value was increased by 32.6%, and the cohesive force was increased by 49.2%. (2) MICP reaction has no effect on the root content of the peak intensity, indicating that MICP has no negative effect on vegetation growth and can be combined with vegetation protection. The results show that MICP synergistic slope protection has strong engineering application value. |
Copyright: | © Xuegui Zheng et al. et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
0.81 MB
- Informations
sur cette fiche - Reference-ID
10698141 - Publié(e) le:
11.12.2022 - Modifié(e) le:
15.02.2023