Experimental Study on Electrical Resistivity of Cement-Stabilized Lead-Contaminated Soils
Auteur(s): |
Zhiguo Cao
Lian Xiang Erxing Peng Kai Li |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-11 |
DOI: | 10.1155/2018/4628784 |
Abstrait: |
Geotechnical applications based on soil resistivity measurement are becoming more popular in recent years. In order to explore the potential application of the electrical resistivity method in stabilization/solidification of contaminated soils, two kinds of lead-contaminated soils stabilized with cement were prepared, and the electrical resistivity and unconfined compressive strength of specimens after curing for various periods were measured. The test results show that a high lead content leads to a low value of electrical resistivity of cement-stabilized soils, and increasing cement content and curing time result in a significant increase in electrical resistivity. The reduction in porosity and degree of saturation, as a result of the cement hydration process, leads to an increase in electrical resistivity. The ratio of porosity-lead content/cement content-curing time, combining together the effect of lead content, cement content, curing time, and porosity on electrical resistivity of stabilized soils, can be used as a fundamental parameter to assess electrical resistivity of cement-stabilized lead-contaminated soils. Archie's law can be extended to apply to cement-stabilized lead-contaminated soils by using this ratio, replacing the porosity. The new resistivity formula obtained in this paper is just empirical. There is a power function correlation between unconfined compressive strength and electrical resistivity of lead-contaminated soils stabilized with cement. Electrical resistivity measurement can be used as an economical and time-effective method to assess the quality of cement-stabilized lead-contaminated soils in practice. |
Copyright: | © 2018 Zhiguo Cao et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.62 MB
- Informations
sur cette fiche - Reference-ID
10176473 - Publié(e) le:
30.11.2018 - Modifié(e) le:
02.06.2021