0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental Study on Cumulative Damage Behavior of Steel-Reinforced Concrete Columns

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-16
DOI: 10.1155/2020/5281725
Abstrait:

The cumulative damage behavior of SRC columns under far-field long-period ground motions was simulated and studied by quasi-static tests with the same displacement for 10 times. Quasi-static tests of 8 SRC columns were conducted under the horizontal cyclic loading with the same displacement for 10 times or 3 times, and then the effects of steel ratio, stirrup ratio, axial compression ratio, and number of cyclic loading on the cumulative damage of SRC columns under the far-field long-period ground motions were studied. The results showed that the number of cyclic loading had little effect on the peak load of the specimens, but had a significant effect on the deformation capacity, stiffness degradation, and energy dissipation capacity. Compared with the specimens after 3 cycles, the displacement ductility coefficient of specimens after 10 cycles was reduced by about 20%–26%, the ultimate hysteresis energy dissipation was reduced by 35%–48%, while the stiffness degradation rate was accelerated. After the peak load, the cumulative damage caused by multiple cyclic loading with the same displacement was more significant, which aggravated the reduction of bearing capacity and stiffness degradation. The smaller the steel ratio and stirrup ratio, the larger the axial compression ratio, and the greater the reduction of the bearing capacity and stiffness of specimens. However, accumulated damage caused by multiple cyclic loading with the same displacement had a slight impact on the energy dissipation capacity. Increasing the steel ratio and stirrup ratio can effectively improve the deformation capacity and energy dissipation capacity of the specimens and reduce the bearing capacity and stiffness degradation caused by cumulative damage.

Copyright: © Lianjie Jiang and Guoliang Bai et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10423043
  • Publié(e) le:
    02.06.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine