Experimental Study and Prediction Model of the Flexural Strength of concrete Containing Fly Ash and Ground Granulated Blast-Furnace Slag
Auteur(s): |
Hua Zhang
Qing-Fu Li Hua-De Zhou Zong-Ming Song |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2021, v. 2021 |
Page(s): | 1-16 |
DOI: | 10.1155/2021/8773664 |
Abstrait: |
Orthogonal experiments were performed to study the flexural strength of an eco-friendly concrete containing fly ash (FA) and ground granulated blast-furnace slag (GGBFS). The effects of different test parameters, such as water-binder ratio (W/B), FA content, GGBFS content, sand ratio, gravel gradation, and curing time, on the flexural strength of the concrete were analyzed. The significance level of each influencing factor and the optimal mixing proportion of the concrete were determined by range analysis and hierarchy analysis. It was found that the W/B ratio had the greatest influence on the flexural strength of the concrete. The flexural strength of the concrete decreased gradually with the increase of W/B. The GGBFS content and the sand ratio had a greater influence in the early stage of concrete curing. The middle and later stages of concrete curing were mainly affected by gravel gradation and the FA content. A flexural strength prediction model of the concrete was developed based on a backpropagation neural network (BPNN) and a support vector machine (SVM) model. It was noticed that the BPNN and SVM models both had higher accuracy than the empirical equation, and the BPNN model was more accurate than the SVM model. |
Copyright: | © Hua Zhang et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.43 MB
- Informations
sur cette fiche - Reference-ID
10638219 - Publié(e) le:
30.11.2021 - Modifié(e) le:
17.02.2022