Experimental Investigation on the Axial Compressive Behaviour of Cold-Formed Steel-Concrete Composite Columns Infilled with Various Types of Fibre-Reinforced Concrete
Auteur(s): |
Florence More Dattu Shanker More
Senthil Selvan Subramanian |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 13 janvier 2023, n. 1, v. 13 |
Page(s): | 151 |
DOI: | 10.3390/buildings13010151 |
Abstrait: |
The exceptional structural strength and low cost of steel-concrete composite columns make them a popular choice for civil engineering structures. Numerous forms of composite columns, including steel tubes filled with concrete, have been produced recently in response to various construction situations. Cold-formed steel tubular columns with concrete filling have higher strength and ductility due to their capacity to withstand inner buckling and postpone outward buckling. The objective of this research is to determine the ductile and strength performance of composite columns containing various forms of fibre-reinforced concrete when subjected to axial compression. Several different kinds of fibre-reinforced concrete (FRC) are employed as additives in hollow steel columns, including steel FRC, carbon FRC, glass FRC, coir FRC, jute FRC, and sisal FRC. Axial compression tests were performed on 24 columns, including three hollow steel columns and 21 composite columns. Three distinct slenderness ratios were developed and used. Axial bearing capacity, compressive stress-strain curves, ductility, peak strain, axial shortening, and toughness were among the topics covered by the axial compression test. Experimental findings demonstrated that all conventional composite columns experienced failure through overall buckling, Local buckling and crushing of concrete infill, which was transformed into more ductile failure using fibre-reinforced concrete infills. The test results revealed that fibre-reinforced concrete-infilled steel columns outperformed conventional composite columns in terms of strength, ductility, and energy absorption capacity. The percentage increase in load-carrying capacity was observed as 203.88%, 193.48% and 190.03% when compared to hollow cold-formed steel tubular columns in medium, short and stub columns, respectively. Under assessment of stub, short, and medium columns, the load-strain plots demonstrated that the steel fibre-reinforced concrete in-filled columns performed well in terms of ductility. Localized buckling and crushing of the concrete infill caused the composite columns with low slenderness ratios to fail. In contrast, concrete-filled steel tube columns with higher slenderness ratios showed column failure through the overall buckling of the composite column. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
11.32 MB
- Informations
sur cette fiche - Reference-ID
10712025 - Publié(e) le:
21.03.2023 - Modifié(e) le:
10.05.2023