0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental Investigation on Shear Strength and Microstructure of Chemically Treated Sisal Fiber-Reinforced Concrete

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2024
Page(s): 1-15
DOI: 10.1155/2024/4830026
Abstrait:

The incorporation of sisal fiber into the concrete matrix reduces waste disposal, which has negative environmental impacts. The aim of this study was to perform an experimental investigation on shear strength and microstructure of chemically treated sisal fiber-reinforced concrete (SFRC). In order to accomplish the aim of the study, physical, shear, and mechanical properties of concrete reinforced with chemically treated sisal fiber have been performed. 0.50%, 1.00%, 1.25%, 1.50%, 1.75%, and 2.00% of sodium hydroxide (NaOH) and sulfuric acid (H2SO4) treated sisal fiber were used as an addition to the dry weight average with the help of the American Concrete Institute (ACI) mix design procedure. After the 7th and 28th days of curing, shear strength according to the ASTM D5379M standard and the mechanical properties of concrete have been conducted. For microstructural properties, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were conducted after the concrete was cured for 28 days. Forty-six percent and 20% compressive strength enhancement at the 7th and 28th days of curing was compared to the control mix. Twenty-seven percent enhancement was recorded in the split tensile strength of 1.5% SFRC as compared to the control mix at 28 curing days. A shear strength of 1.5% SFRC was improved by 95% at the 7th curing days and 28% at the 28th curing days as compared to the control mix. As compared to conventional concrete, SFRC shows a denser microstructure. In addition to this, portlandite, quartz, calcium aluminum silicate, and C─S─H crystal are the available phases in the concrete matrix.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2024/4830026.
  • Informations
    sur cette fiche
  • Reference-ID
    10786157
  • Publié(e) le:
    20.06.2024
  • Modifié(e) le:
    20.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine