Experimental Investigation of Seismic Performance of a Hybrid Beam–Column Connection in a Precast Concrete Frame
Auteur(s): |
Weihong Chen
Yujun Xie Xiaohui Guo Dong Li |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 7 juin 2022, n. 6, v. 12 |
Page(s): | 801 |
DOI: | 10.3390/buildings12060801 |
Abstrait: |
Prefabricated beam–column connections are the most vulnerable components of prefabricated buildings during earthquake events. The seismic performance of the beam–column connection is functional as the critical component plays a key role in structural safety. This study aimed to develop a novel hybrid prefabricated concrete (HPC) connection, combining with wet and dry connection techniques, to enhance the seismic performance of prefabricated concrete frames. A quasi-static experimental investigation was carried out to examine the seismic performance of the proposed connection. Two full-scale prefabricated connection specimens utilizing the proposed HPC connection and another code-defined monolithic prefabricated concrete (PC) connection were tested under cyclic loading, keeping the axial load on the column constant. The ductility, stiffness degradation, energy dissipation capacity, post-tensioned force, and residual displacement were obtained based on the experimental output. The results indicated that the HPC connection developed had high construction efficiency and better seismic performance than the conventional PC connection. The strength and energy dissipation capacity were significantly improved by up to 52% and 10%, respectively. The cracking and stiffness degradation were well-controlled. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.68 MB
- Informations
sur cette fiche - Reference-ID
10679531 - Publié(e) le:
17.06.2022 - Modifié(e) le:
10.11.2022