0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental investigation and modeling of the temperature memory effect in a 4D-printed auxetic structure

Auteur(s): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Smart Materials and Structures, , n. 9, v. 31
Page(s): 095021
DOI: 10.1088/1361-665x/ac8031
Abstrait:

4D printing is an innovative manufacturing approach that combines 3D printing and stimuli- responsive abilities to produce objects with complex geometry and capable of shapeshifting over time (the fourth dimension). To pursue such an approach this paper proposes to develop re-entrant honeycomb auxetic grids with tunable shape reconfigurable behavior. Particularly, the work combines 3D printing and a photopolymer exhibiting the so-called temperature memory effect (TME), a peculiar shape memory behavior expressing the capability of the material to remember not only the original shape but also the deformation temperature. A thorough experimental activity was carried out on single auxetic unit cells, chosen as representative of the whole auxetic grid, to properly highlight and assess their response upon heating after single-step and multiple-step deformation histories and to describe the recovery process as a function of time and temperature. Results demonstrate the possibility to achieve an easily controlled TME and to successfully exploit it for autonomous, complex hierarchical transformations over a large range of temperatures. As a proof-of-concept, the study of the sequential recovery of an entire auxetic grid subjected to double-step programming allowed highlighting a decoupled in-plane elongation and out-of-plane bending. The behavior of the 4D-printed auxetic structures was simulated by means of finite element (FE) analysis, using a thermoviscoelastic model of the photopolymer and viscoelastic experimental data obtained by time-temperature superposition analysis applied to multifrequency dynamic mechanical tests and to isothermal recovery tests. A good correspondence between experiments and simulations was obtained for all shape memory tests, demonstrating that the proposed FE approach is a suitable tool to support the design of these structures. The combination of 3D printing and TME opens new perspectives to achieve dynamic tunability in mechanical metamaterials, that is a key ingredient in several application fields.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1361-665x/ac8031.
  • Informations
    sur cette fiche
  • Reference-ID
    10685458
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    13.08.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine