• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental Behavior of Concrete Columns Confined by Transverse Reinforcement with Different Details

  1. De Matteis, Gianfranco / Corlito, Valentina / Guadagnuolo, Mariateresa / Tafuro, Anna (2019): Seismic Vulnerability Assessment and Retrofitting Strategies of Italian Masonry Churches of the Alife-Caiazzo Diocese in Caserta. Dans: International Journal of Architectural Heritage, v. 14, n. 8 (avril 2019).

    https://doi.org/10.1080/15583058.2019.1594450

  2. Cristofaro, Maria T. / Nudo, Raffaele / Tanganelli, Marco / D'Ambrisi, Angelo / De Stefano, Mario (2018): Issues concerning the assessment of concrete compressive strength in existing buildings: Application to a case study. Dans: Structural Concrete, v. 19, n. 3 (juin 2018).

    https://doi.org/10.1002/suco.201700070

  3. Faella G, Giordano A, Guadagnuolo M. Unsymmetric-plan masonry buildings: pushover vs nonlinear dynamic analysis proc. 9th US National and 10th Canadian Conference on Earthquake Engineering Toronto. Including Papers from the 4th International Tsunami Symposium 2010; pp. 2010; 7 : 5704-13. July 25-29 Curran Associates, Inc. ISBN 978-1-61738-844-6.
  4. Ferreira, Tiago Miguel / Mendes, Nuno / Silva, Rui (2019): Multiscale Seismic Vulnerability Assessment and Retrofit of Existing Masonry Buildings. Dans: Buildings, v. 9, n. 4 (avril 2019).

    https://doi.org/10.3390/buildings9040091

  5. Dumaru R, Rodrigues H, Varum H. Comparative study on the seismic performance assessment of existing buildings with and without retrofit strategies. Int J Adv Struct Eng 2018; 10 : 439-64.

    https://doi.org/10.1007/s40091-018-0207-z

  6. Guadagnuolo M, Faella G. Simplified Design of Masonry Ring-Beams Reinforced by Flax Fibers for Existing Buildings Retrofitting, Buildings Build 2020; 10 (1)

    https://doi.org/10.3390/buildings10010012

  7. Frunzio G, Mattiello G, Basile A. Diagnosis of the critical state of concrete In: Atti del XIII Forum Internazionale di Studi "Le Vie dei Mercanti"– Heritage and Technology - Mind Knowledge Experience 56 : 1783-91. 9788865424162 Scuola Pitagora Editore Napoli 2015.
  8. Monaco M, Bergamasco I, Betti M. A no-tension analysis for a brick masonry vault with lunette. J Mech Mater Struct 2018; 13 (5) : 703-14.

    https://doi.org/10.2140/jomms.2018.13.703

  9. Guadagnuolo M, Aurilio M, Faella G. Retrofit assessment of masonry buildings through simplified structural analysis. Fratt Integr Strutt 2020; 14 (51) : 398-409.

    https://doi.org/10.3221/IGF-ESIS.51.29

  10. Frunzio, Giorgio / Di Gennaro, Luciana / Guadagnuolo, Mariateresa (2019): Palazzo Ducale in Parete: remarks on code provisions. Dans: International Journal of Masonry Research and Innovation, v. 4, n. 1 ( 2019).

    https://doi.org/10.1504/ijmri.2019.096826

  11. Gesualdo A, Iannuzzo A, Penta F. F. and M. Monaco,. Nonlinear dynamics of a wind turbine tower. Front Mech Eng 2019; 14 (3) : 342-50.

    https://doi.org/10.1007/s11465-019-0524-3

  12. Monaco M, Tafuro A, Calderoni B, Guadagnuolo M. Shear plastic oscillations of a wind turbine tower Proc COMPDYN 2019, 7th ECCOMAS Thematic Conf on Computational Methods in Structural Dynamics Earthquake Engineering 2019; 409-21.

    https://doi.org/10.7712/120119.6928.19511

  13. Penelis GG, Kappos AJ. "Earthquake-resistant Concrete Structures" 1988.
  14. Nudo R, Viti S. "L’influenza delle caratteristiche meccaniche dell’acciaio d’armatura sulla capacità rotazionale di elementi in c.a." Atti Convegno Nazionale ANIDIS “"L’Ingegneria Sismica in Italia", 1999.
  15. Verderame, Gerardo M. / Polese, Maria / Cosenza, Edoardo (2009): Vulnerability of existing R.C. buildings under gravity loads: A simplified approach for non sway structures. Dans: Engineering Structures, v. 31, n. 9 (septembre 2009).

    https://doi.org/10.1016/j.engstruct.2009.03.014

  16. Verderame GM, Manfredi G, Frunzio G. Le proprietà meccaniche dei calcestruzzi impiegati nelle strutture in cemento armato realizzate negli anni 60 In: "Atti X Congresso Nazionale “L’ingegneria sismica in Italia" 2001.
  17. Richart FE, Brandtzaeg A, Brown RL. A study of the failure of concrete under combined compressive stresses University of Illinois at Urbana Champaign, College of Engineering Engineering Experiment Station 1928.
  18. Richart F, Brandtzaeg A, Brown R. The failure of plain and spirally reinforced concrete in compression. University of Illinois Engineering Experiment Station, Bulletin 1929; (190): 74.
  19. Chan, W. W. L. (1955): The ultimate strength and deformation of plastic hinges in reinforced concrete frameworks. Dans: Magazine of Concrete Research, v. 7, n. 21 (novembre 1955).

    https://doi.org/10.1680/macr.1955.7.21.121

  20. Scott BD, Park R, Priestley MJ. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. J Am Concr Inst 1982; 79 : 13-27.
  21. Campione, G. / Cavaleri, L. / Ferrotto, M. F. / Macaluso, G. / Papia, M. (2016): Efficiency of Stress-Strain Models of Confined Concrete With and Without Steel Jacketing to Reproduce Experimental Results. Dans: The Open Construction and Building Technology Journal, v. 10, n. 1 (décembre 2016).

    https://doi.org/10.2174/1874836801610010065

  22. Kent DC, Park R. Flexural members with confined concrete J Struct Div ASCE, 1971; 97
  23. Vallenas JE, Bertero VV, Popov EP. Concrete confined by rectangular hoops and subjected to axial loads Research Report No UCB/EERC-77/13 1977.
  24. Cusson, Daniel / Paultre, Patrick (1995): Stress-Strain Model for Confined High-Strength Concrete. Dans: Journal of Structural Engineering (ASCE), v. 121, n. 3 (mars 1995).

    https://doi.org/10.1061/(asce)0733-9445(1995)121:3(468)

  25. Yong, Yook‐Kong / Nour, Malakah G. / Nawy, Edward G. (1988): Behavior of Laterally Confined High‐Strength Concrete under Axial Loads. Dans: Journal of Structural Engineering (ASCE), v. 114, n. 2 (février 1988).

    https://doi.org/10.1061/(asce)0733-9445(1988)114:2(332)

  26. Suzuki M, Akiyama M, Hong KN, Cameron ID, Wang WL. Stress-strain model of high-strength concrete confined by rectangular ties 13th World Conference on Earthquake Engineering Vancouver, BC Canada. August 1-6, 2004.
  27. Sheikh SA, Uzumeri SM. Strength and ductility of tied concrete columns. ASCE J Stuctur Div 1980; 106 : 1079-102.
  28. Mander, J. B. / Priestley, M. J. N. / Park, R. (1988): Theoretical Stress‐Strain Model for Confined Concrete. Dans: Journal of Structural Engineering (ASCE), v. 114, n. 8 (septembre 1988).

    https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804)

  29. CEN. BS EN 1998-2:2005 Eurocode 8: design of structures for earthquake resistance Part 2: Bridges 2005.
  30. MIT. Istruzioni per l’applicazione dell’aggiornamento delle Norme Tecniche per le Costruzioni di cui al DM 17012018, CSLLPP n 7 21012019, Official Bulletin n35 1102 2019. (in Italian).
  31. Faftis A, Shah SP. Lateral reinforcement for high strength concrete columns 1985; Vol. SP-87-12 : 213-32.
  32. Martinez S, NilsoN FO Slate. Spirally reinforced high-strength concrete columns, Res Rep No 82-10, Dept of Struct Engrg, 1982.
  33. Bjerkli L, Tomaszewicz A, Jansen JJ. "Deformation properties and ductility of high strength concrete" Proceedings of Second International Symposium on Utilization of High Strength Concr 1990; 215-38. Berkley, California. 1990; pp.
  34. Li B, Park R, Tanaka H. Strength & ductility of reinforced concrete members and frames constructed using high strength concrete 1994.
  35. Razvi, Salim / Saatcioglu, Murat (1999): Confinement Model for High-Strength Concrete. Dans: Journal of Structural Engineering (ASCE), v. 125, n. 3 (mars 1999).

    https://doi.org/10.1061/(asce)0733-9445(1999)125:3(281)

  36. Saatcioglu, Murat / Razvi, Salim R. (1992): Strength and Ductility of Confined Concrete. Dans: Journal of Structural Engineering (ASCE), v. 118, n. 6 (juin 1992).

    https://doi.org/10.1061/(asce)0733-9445(1992)118:6(1590)

  37. Sheikh SA, Uzumeri SM. Analytical Model for Concrete Confinement in Tied Columns. J Struct Div 1982; 108 : 2703-22.
  38. Binici, Baris (2005): An analytical model for stress–strain behavior of confined concrete. Dans: Engineering Structures, v. 27, n. 7 (juin 2005).

    https://doi.org/10.1016/j.engstruct.2005.03.002

  39. Abdesselam H, Kassoul A, Bouzid H. New model for confinement of reinforced concrete columns with an ultrahigh strength close to 200 MPa. Eng Struct 2019; 199

    https://doi.org/10.1016/j.engstruct.2019.109594

  40. Tung, Nguyen Duc / Tue, Nguyen Viet (2016): A fracture mechanics-based approach to modeling the confinement effect in reinforced concrete columns. Dans: Construction and Building Materials, v. 102 (janvier 2016).

    https://doi.org/10.1016/j.conbuildmat.2015.11.031

  41. Bousalem, B. / Chikh, N. (2007): Development of a confined model for rectangular ordinary reinforced concrete columns. Dans: Materials and Structures, v. 40, n. 6 (juillet 2007).

    https://doi.org/10.1617/s11527-006-9172-2

  42. Vu, Ngoc Son / Yu, Bo / Li, Bing (2017): Stress-strain model for confined concrete with corroded transverse reinforcement. Dans: Engineering Structures, v. 151 (novembre 2017).

    https://doi.org/10.1016/j.engstruct.2017.08.049

  43. Légeron, Frédéric / Paultre, Patrick (2003): Uniaxial Confinement Model for Normal- and High-Strength Concrete Columns. Dans: Journal of Structural Engineering (ASCE), v. 129, n. 2 (février 2003).

    https://doi.org/10.1061/(asce)0733-9445(2003)129:2(241)

  44. Lim, Jian C. / Ozbakkaloglu, Togay (2014): Stress–strain model for normal- and light-weight concretes under uniaxial and triaxial compression. Dans: Construction and Building Materials, v. 71 (novembre 2014).

    https://doi.org/10.1016/j.conbuildmat.2014.08.050

  45. Samani, Ali Khajeh / Attard, Mario M. (2012): A stress–strain model for uniaxial and confined concrete under compression. Dans: Engineering Structures, v. 41 (août 2012).

    https://doi.org/10.1016/j.engstruct.2012.03.027

  46. Pham, Thong M. / Hadi, Muhammad N. S. (2014): Confinement model for FRP confined normal- and high-strength concrete circular columns. Dans: Construction and Building Materials, v. 69 (octobre 2014).

    https://doi.org/10.1016/j.conbuildmat.2014.06.036

  47. Laterza M, D’Amato M, Braga F, Gigliotti R. Extension to rectangular section of an analytical model for concrete confined by steel stirrups and/or FRP jackets. Comp Struct 2017; 176

    https://doi.org/10.1016/j.compstruct.2017.06.025

  48. Lai, M. H. / Liang, Y. W. / Wang, Q. / Ren, F. M. / Chen, M. T. (2020): A stress-path dependent stress-strain model for FRP-confined concrete. Dans: Engineering Structures, v. 203 (janvier 2020).

    https://doi.org/10.1016/j.engstruct.2019.109824

  49. Isleem, Haytham F. / Tahir, Muhammad / Wang, Zhenyu (2020): Axial stress–strain model developed for rectangular RC columns confined with FRP wraps and anchors. Dans: Structures, v. 23 (février 2020).

    https://doi.org/10.1016/j.istruc.2019.12.020

  50. Paultre, P. / Légeron, F. (2008): Confinement Reinforcement Design for Reinforced Concrete Columns. Dans: Journal of Structural Engineering (ASCE), v. 134, n. 5 (mai 2008).

    https://doi.org/10.1061/(asce)0733-9445(2008)134:5(738)

  51. Braga F, Gigliotti R, Laterza M, D’Amato M. Valutazione analitica degli effetti del confinamento sulla capacità di pilastri e travi in c.a. di strutture esistenti e di nuova progettazione In: XII Convegno "L'Ingegneria Sismica in Italia" 2007.
  52. MIT. Norme Tecniche per le Costruzioni, DM 17012018, Official Bulletin n 42, 2002 2018. (in Italian)
  53. Plizzari, G. A. / Deldossi, M. A. / Massimo, S. (1998): Transverse reinforcement effects on anchored deformed bars. Dans: Magazine of Concrete Research, v. 50, n. 2 (juin 1998).

    https://doi.org/10.1680/macr.1998.50.2.161

  54. Lee JH, Seok SG, Son HS. Seismic Performance and Reinforcement Details of Circular Bridge Columns 7th National Conference on Earthquake Engineering Boston, Massachusetts. July 21-25, 2002
  55. Dolce M, Masi A, Ferrini M. Estimation of the actual in-place concrete strength in assessing existing RC structure The Second International Fib Congress Naples, Italy. 2006. 2006. June 5-8
  56. Kuang, J. S. / Wong, H. F. (2005): Improving ductility of non-seismically designed RC columns. Dans: Proceedings of the Institution of Civil Engineers - Structures and Buildings, v. 158, n. 1 (février 2005).

    https://doi.org/10.1680/stbu.2005.158.1.13

  57. Campione G, Fossetti M, Papia M. Analisi teorico-sperimentale del comportamento flessionale di colonne in calcestruzzo fibrorinforzato Mecc MaterStrutt 2009; 1 : 15-37. ISSN 2035-679X (in italian)
  58. Li Z, Peng Z, Teng J, Wang Y. Experimen tal study of damage evolution in circular stirrup-confined concrete. Mater 2016; 9 : 278.

    https://doi.org/10.3390/ma9040278

  59. Nindyawati N, Sulton M, Pratama MMA, Rahayuningsih T. Confinements of concrete cylinders using bamboo spiral Stirrups. Mater Sci Eng 2019; 669

    https://doi.org/10.1088/1757-899X/669/1/012059

  60. Sheikh SA, Toklucu MT. Reinforced Concrete Columns Confined by Circular Spirals and Hoops. ACI Struct J 1993.
  61. Kato D, Zhuzhen L, Yatsutsuka T, Nakamura Y. Axial load capacity of r/c columns with various reinforcing details and concrete strength First European Conference on Earthquake Engineering and Seismology Geneva, Switzerland. 2006. 2006.
  62. Cosenza E, Verderame GM, Ricci P. Il dettaglio di chiusura delle staffe nel confinamento di elementi in calcestruzzo armato: primi risultati sperimentali In: "XIII Convegno ANIDIS "L' ingegneria Sismica in Italia" 2009.
  63. Thorhallsson ER, Bjarnason PV. Test of Rectangular Confined Concrete Columns for Strength and Ductility 15th World Conference on Earthquake Engineerin Lisbon 2012.
  64. Tarabia AM, Albakry HF. Strengthening of RC columns by steel angles and strips. Alex Eng J 2014; 53 : 615-26.

    https://doi.org/10.1016/j.aej.2014.04.005

  65. Ren, Xiaodan / Liu, Kai / Li, Jie / Gao, Xiangling (2017): Compressive behavior of stirrup-confined concrete under dynamic loading. Dans: Construction and Building Materials, v. 154 (novembre 2017).

    https://doi.org/10.1016/j.conbuildmat.2017.07.174

  66. Wang, Weilun / Zhang, Mingyang / Tang, Yun / Zhang, Xiaogang / Ding, Xiaobo (2017): Behaviour of high-strength concrete columns confined by spiral reinforcement under uniaxial compression. Dans: Construction and Building Materials, v. 154 (novembre 2017).

    https://doi.org/10.1016/j.conbuildmat.2017.07.179

  67. Lee H, Lai Y, Chen C, Tao C. Behavior and modeling of high-strength concrete tied columns under axial compression Journal of the Chinese Institute of Engineers, Taylor & Francis 2018.

    https://doi.org/10.1080/02533839.2018.1473806

  68. Marvel, Lonnie / Doty, Natalie / Lindquist, Will / Hindi, Riyadh (2014): Axial behavior of high-strength concrete confined with multiple spirals. Dans: Engineering Structures, v. 60 (février 2014).

    https://doi.org/10.1016/j.engstruct.2013.12.019

  69. Watanabe, Ken / Niwa, Junichiro / Yokota, Hiroshi / Iwanami, Mitsuyasu (2004): Experimental Study on Stress-Strain Curve of Concrete Considering Localized Failure in Compression. Dans: Journal of Advanced Concrete Technology, v. 2, n. 3 ( 2004).

    https://doi.org/10.3151/jact.2.395

  70. Nakamura H, Higai T. Compressive Fracture Energy and Fracture Zone Lengh of Concrete In: BP. Shing, Modeling of Inelastic Behaviors of Structures Under Seismic Loads, 2001. 978-0-7844-0553-6 (ISBN-13), 0-7844-0553-0 (ISBN-10),
  71. Melek M, Wallace JW. Behavior and modeling of columns with compression lap splices 7th National Conference on Earthquake Engineering Boston, Massachusetts. July 21-25, 2002
  72. Braga F, Laterza M, Gigliotti R. G. Dragonetti and D. Nigro. Prove di compressione ciclica su pilastri in c.a. confinati con staffe e/o con "tessuti in fibra di carbonio", In: 11° Convegno Nazionale "L’Ingegneria Sismica in Italia" 2004.
  73. Eom T, Park H, Kang S, Jin J, Ahn H. Continuous hoops for trasverse reinforcement of reinforced concrete columns in: The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13) 2013. Jeju, Korea. 2013. September 8-12
  74. Goharrokhi A, Ahmadi J, Shayanfar MA, et al. Effect of transverse reinforcement corrosion on compressive strength reduction of stirrup-confined concrete: an experimental study. Sadhana 2020; 45 (49)

    https://doi.org/10.1007/s12046-020-1280-0

  75. Ahmed, Asmaa Abdeldaim / Hassan, Mohamed / Mohamed, Hamdy / Abouzied, Ahmed / Masmoudi, Radhouane (2018): Axial behavior of circular CFFT long columns internally reinforced with steel or carbon and glass FRP longitudinal bars. Dans: Engineering Structures, v. 155 (janvier 2018).

    https://doi.org/10.1016/j.engstruct.2017.11.037

  76. Moshiri, Niloufar / Hosseini, Ardalan / Mostofinejad, Davood (2015): Strengthening of RC columns by longitudinal CFRP sheets: Effect of strengthening technique. Dans: Construction and Building Materials, v. 79 (mars 2015).

    https://doi.org/10.1016/j.conbuildmat.2015.01.040

  77. Vincent, Thomas / Ozbakkaloglu, Togay (2015): Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect. Dans: Construction and Building Materials, v. 75 (janvier 2015).

    https://doi.org/10.1016/j.conbuildmat.2014.10.038

  78. Tahir, Muhammad / Wang, Zhenyu / Ali, Kanwar Majid (2019): Axial compressive behavior of square concrete columns confined with CFRP strip ties using wet lay-up technique. Dans: Construction and Building Materials, v. 200 (mars 2019).

    https://doi.org/10.1016/j.conbuildmat.2018.12.127

  79. UNI EN 206:2016. Calcestruzzo - Specificazione, prestazione, produzione e conformità. (in Italian)
  80. UNI EN ISO 15630-1:2019, Acciaio per calcestruzzo armato e calcestruzzo armato precompresso - Metodi di prova - Parte 1: Barre, rotoli e fili per calcestruzzo armato. (in Italian)
  81. Sheikh SA, Uzumeri SM. Analytical Model for Concrete Confinement in Tied Columns. J Struct Div 1982; 108 : 2703-22.

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10434375
  • Publié(e) le:
    11.09.2020
  • Modifié(e) le:
    11.09.2020