0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental and Theoretical Study of a New Technique for Mixing Self-Compacting Concrete with Marble Sludge Grout

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2018
Page(s): 1-11
DOI: 10.1155/2018/3283451
Abstrait:

Currently, marble waste is valued by incorporating powders, obtained by drying and grinding sludge resulting from marble blocks cutting operation, or the aggregates, obtained by crushing the solid waste, on self-compacting concrete. These two procedures require a lot of energy. This experimental and theoretical work focuses on the direct incorporation of marble sludge in self-compacting concrete. The first part needs the study of the rheological behavior of the marble sludge grout (MSG) as a function of the added water amount. For this, different grouts were prepared and tested by varying the water/sludge ratio. In the second part, four self-compacting concretes (SCCs) were mixed with MSG having different water/sludge ratios in order to validate a new technique of gassing self-compacting concrete with MSG. The test results show that the marble grains of grout is totally dispersed when the water/sludge ratio was equal to 1.2. The results also show that the gassing with MSG allows us to obtain SCC having both self-compacting property and self-leveling property compared to SCC made by adding marble filler to the cementitious matrix.

Copyright: © 2018 Rayed Alyousef et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10176406
  • Publié(e) le:
    30.11.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine