Experimental and Numerical Study on Steel Fiber Concrete under Blast Loading
Auteur(s): |
Huawei Yin
Yaoguo Ouyang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 1 décembre 2022, n. 12, v. 12 |
Page(s): | 2119 |
DOI: | 10.3390/buildings12122119 |
Abstrait: |
In this paper, 30 SFRC (Steel Fiber Reinforced Concrete) spindle specimens with different steel fiber contents were subjected to static loading tests and blast wave loading tests on spindle specimens with different steel fiber contents using a self-developed planar blast wave loading device (a new type of patent recognized by the State Intellectual Property Rights). The dynamic response, impact performance and damage mode of Steel Fiber Reinforced Concrete under blast loading were investigated. The experimental results show that with the increase of steel fiber content (within 2%), the strength of the Steel Fiber Reinforced Concrete increases slightly. The flatter the falling section of the stress-strain curve, the better the energy absorption effect. With the increase of explosive equivalent (24 g RDX and 36 g RDX), the more obvious the strain rate effect, the greater the increase of peak stress, and the SFRC with 2% steel fiber content has the best energy absorption effect. Furthermore, the dynamic response of SFRC spindle specimens was numerically simulated using the improved K&C material model with LS-DYNA explicit finite element dynamic analysis software. The results verify the validity and reliability of the improved K&C material model. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.01 MB
- Informations
sur cette fiche - Reference-ID
10700074 - Publié(e) le:
11.12.2022 - Modifié(e) le:
10.05.2023