0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experimental and Numerical Studies of a Damaged Bridge Considering Stochastic Traffic Flows and Road Roughness

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 8, v. 17
Page(s): 1750089
DOI: 10.1142/s0219455417500894
Abstrait:

Experimental and numerical studies are performed to analyze a concrete bridge under moving vehicular loads considering the effects of the damage cracks, stochastic traffic flows, and bridge surface roughness. Specifically, (1) the crack zone in the concrete bridge is modeled by a damage function with three parameters, i.e. the length of damaged zone, the magnitude of the damage, and the variation of Young’s modulus of the material; (2) a cellular automation (CA) based traffic flow model is adopted, which can capture the basic features of the probabilistic traffic flows using realistic traffic rules; (3) a three-dimensional (3D) vehicle model and a single vehicle model are each used to simulate the vehicles in the traffic flow for computational efficiency; and (4) the bridge and vehicle coupled equations are established by combining those for the bridge and vehicles using the displacement and interaction force relationship at the contact patches. The experimental and numerical investigations are conducted to validate the proposed modeling methodology. As an illustration, a prototype concrete bridge structure with partial damage is studied. Finally, parametric studies are conducted to study the effects of damage cracks, stochastic traffic flows, and surface roughness on the dynamic displacement, impact factor, impact force, and dynamic load coefficient of the bridge.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455417500894.
  • Informations
    sur cette fiche
  • Reference-ID
    10352340
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine