0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evolutionary Modeling to Evaluate the Shear Behavior of Circular Reinforced Concrete Columns

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2014
Page(s): 1-14
DOI: 10.1155/2014/684256
Abstrait:

Despite their frequent occurrence in practice, only limited studies on the shear behavior of reinforced concrete (RC) circular members are available in the literature. Such studies are based on poor assumptions about the physical model, often resulting in being too conservative, as well as technical codes that essentially propose empirical conversion rules. On this topic in this paper, an evolutionary approach named EPR is used to create a structured polynomial model for predicting the shear strength of circular sections. The adopted technique is an evolutionary data mining methodology that generates a transparent and structured representation of the behavior of a system directly from experimental data. In this study experimental data of 61 RC circular columns, as reported in the technical literature, are used to develop the EPR models. As final result, physically consistent shear strength models for circular columns are obtained, to be used in different design situations. The proposed formulations are compared with models available from building codes and literature expressions, showing that EPR technique is capable of capturing and predicting the shear behavior of RC circular elements with very high accuracy. A parametric study is also carried out to evaluate the physical consistency of the proposed models.

Copyright: © 2014 Alessandra Fiore et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 3.0 (CC-BY 3.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée.

  • Informations
    sur cette fiche
  • Reference-ID
    10176907
  • Publié(e) le:
    07.12.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine