0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evaluation of Thermal Comfort with and without Fill Using a Thermal Environment Analysis Method for Building Envelopes with Thermally Complex Geometry: A Case Study in Hokkaido, Japan

Auteur(s): ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 7, v. 13
Page(s): 1646
DOI: 10.3390/buildings13071646
Abstrait:

Recently, the number of buildings with curved surfaces has been increasing. Although these buildings are not complex from a design perspective, they are thermally complex from an environmental engineering perspective. Computational fluid dynamics (CFD) is a tool used in environmental engineering analysis that requires advanced analysis techniques. Its analysis load is high, making its use impractical in design. Therefore, a coupled analysis method was developed using the two-dimensional heat flow calculation tool Hygrabe, energy simulation, and CFD. Using this method, the environmental analysis of a building with fill in Hokkaido, Japan, was performed and the accuracy of the analysis was verified. The results of the coupled analysis model were used to evaluate thermal insulation performance. The high thermostability of the fill contributes to the high degree of freedom of the exterior skin and is highly useful for design. The results show that the thermal performance of the building envelope with and without fill did not change the insulation performance. The results for January 15 were below −3.0 °C for all insulation performance levels but higher than the outside air temperature during the night.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

Lieux géographiques

  • Informations
    sur cette fiche
  • Reference-ID
    10737302
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    14.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine