0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evaluation of the Properties of Fiber-Reinforced Pervious Concrete Pavement Incorporating Glass Powder and Kaolin

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: The Open Civil Engineering Journal, , n. 1, v. 18
DOI: 10.2174/0118741495303730240307101941
Abstrait:

Introduction

Pervious concrete has been significantly helpful in water quality control and preventing surface runoff through easy infiltration and percolation of water. A developing country such as Nigeria is prone to flooding, and promoting pervious concrete will significantly mitigate this problem. However, structural issues are associated with pervious concrete, such as weak bonds and durability concerns due to the infiltration of deleterious materials.

Methods

The study incorporates glass powder, kaolin and sisal fiber to improve the performance of pervious concrete. Glass powder and Kaolin were incorporated as supplementary cementitious materials at 0, 10, and 20% and sisal fiber-reinforced at 0, 1, and 2%. The pervious concrete mixtures at 28 days were subjected to water absorption, permeable voids, and compressive and split tensile strengths.

Results

The results indicate that the fiber-reinforced pervious concrete with glass powder and Kaolin met the strength requirements. However, the strength resulting from incorporating Kaolin is much higher; hence, Kaolin is preferable in times of strength in fiber-reinforced pervious concrete. Nonetheless, an equal 10%-10% combined use of kaolin and glass powder and 1% sisal fiber proves an alternative to obtaining strength values within ACI specification.

Conclusion

These research findings will enhance the performance of pervious concrete, an eco-friendly and responsible approach to managing rainwater.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.2174/0118741495303730240307101941.
  • Informations
    sur cette fiche
  • Reference-ID
    10771535
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    29.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine