0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evaluation of the Low-Temperature Cracking Performance of Recycled Asphalt Mixture: A Development of Equivalent Fracture Temperature

Auteur(s):
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 12
Page(s): 1366
DOI: 10.3390/buildings12091366
Abstrait:

This study aims to develop a new index to evaluate the low-temperature cracking performance (LTCP) of recycled asphalt mixtures. To achieve this, the assumption that fracture energy has limitation in evaluating the LTCP of mixtures was put forward firstly. To reveal this limitation theoretically, a concept of energy absorption rate that characterized the fracture energy of the mixtures was then given. Thirdly, an equivalent fracture temperature (EFT) corresponding to the critical cracking temperature in a thermal stress restrained specimen test (TSRST) was proposed to evaluate the LTCP of mixtures based on a three-point bending beam (3PBB) test. Finally, some data derived from previous work were collected to verify the proposed assumption, and the 3PBB test and TSRST were conducted to investigate the LTCP of five recycled mixtures with different reclaimed asphalt pavement (RAP) material contents and to verify the rationality of the proposed EFT. The results confirmed that fracture energy had some limitations in predicting the LTCP of mixtures. The EFT was as accurate as the critical cracking temperature in evaluating the LTCP of mixtures. Compared to fracture energy and critical cracking temperature, EFT had bigger absolute change and relative change between different mixtures, meaning it was better to differentiate the LTCP of mixtures. Compared to failure strain, EFT was also more definite and less variable when processed by different data analysts, meaning it was more objective.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10692730
  • Publié(e) le:
    23.09.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine