Evaluation of the Effect of C9 Petroleum Resin on Rheological Behavior, Microstructure, and Chemical Properties of Styrene–Butadiene–Styrene Modified Asphalt
Auteur(s): |
Chaoqun Yan
Taoli Zhang Kui Hu Syed Tafheem Abbas Gillani Wengang Zhang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 19 juin 2024, n. 6, v. 14 |
Page(s): | 1599 |
DOI: | 10.3390/buildings14061599 |
Abstrait: |
Understanding the modification mechanism of C9 petroleum resin (C9PR) on styrene–butadiene–styrene (SBS) polymer modified asphalt properties is of significant importance. In this paper, dynamic shear rheometer (DSR), storage stability, fluorescence morphology (FM), scanning electron microscope (SEM), Fourier transform-infrared (FTIR) spectrometer, and molecular dynamic (MD) simulation were adopted to evaluate the rheological, chemical, and microstructure molecular motion state of C9PR and SBS composite modified asphalt at different aging states. The DSR storage results indicate that the addition of C9PR could improve the high-temperature property, storage stability, and temperature susceptibility. FM and SEM results indicate that the network microstructure was enhanced and the roughness between polymer resins and virgin asphalt was improved at the microscopic scale. The MD results indicate that the heterogeneity between C9PR and SBS modified asphalt was demonstrated, and the bonding energies were enhanced with the addition of C9PR. Moreover, the FTIR results indicate that new function groups were generated in addition to C9PR. In general, the addition of C9PR is a good approach to promote high-quality polymer modified asphalt (PMA) for pavement engineering. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
14.44 MB
- Informations
sur cette fiche - Reference-ID
10787810 - Publié(e) le:
20.06.2024 - Modifié(e) le:
20.06.2024