• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evaluation of Seismic Protection Methods for Buried Fuel Pipelines Subjected to Fault Rupture

  1. Abdoun, Tarek H. / Ha, Da / O'Rourke, Michael J. / Symans, Michael D. / O'Rourke, Thomas D. (2009): Factors influencing the behavior of buried pipelines subjected to earthquake faulting. Dans: Soil Dynamics and Earthquake Engineering, v. 29, n. 3 (mars 2009).

    https://doi.org/10.1016/j.soildyn.2008.04.006

  2. ADINA R&D (2006), "Theory and Modeling Guide Volume: I ADINA, Report AED 06-7"
  3. American Lifelines Alliance (2005), "Guidelines for the Design of Buried Steel Pipe"
  4. Bartlett (2015), "Methods of protecting buried pipelines and culverts in transportation infrastructure using EPS Geofoam" in Geotext. Geomembr., v. 43 (2015), p. 450

    https://doi.org/10.1016/j.geotexmem.2015.04.019

  5. Bathe, Klaus-Jürgen / Dvorkin, Eduardo N. (1983): On the automatic solution of nonlinear finite element equations. Dans: Computers & Structures, v. 17, n. 5-6 (janvier 1983).

    https://doi.org/10.1016/0045-7949(83)90101-3

  6. Besstrashnov (2011), "Active faults crossing trunk pipeline routes: some important steps to avoid disaster" in Nat. Hazards Earth Syst. Sci., v. 11 (2011), p. 1433

    https://doi.org/10.5194/nhess-11-1433-2011

  7. Canadian Standards Association (2007), "Z662-07 Oil and Gas Pipeline Systems"
  8. CEN (2006), "Eurocode 8: Design of Structures for Earthquake resistance – Part 4: Silos, Tanks and Pipelines"
  9. Chaloulos (2017), "Trench effects on lateral P-Y relations for pipelines embedded in stiff soils and rocks" in Comput. Geotech., v. 83 (2017), p. 52

    https://doi.org/10.1016/j.compgeo.2016.10.018

  10. Chaloulos (2015), "Lateral soil–pipeline interaction in sand backfill: effect of trench dimensions" in Comput. Geotech., v. 69 (2015), p. 442

    https://doi.org/10.1016/j.compgeo.2015.05.014

  11. Chaudhari, Vasudeo / Venkata Dilip Kumar P. / Kumar, Ramancharla Pradeep (2013): Finite element analysis of buried continuous pipeline subjected to fault motion. Dans: International Journal of Structural Engineering, v. 4, n. 4 ( 2013).

    https://doi.org/10.1504/ijstructe.2013.056981

  12. Chenna (2014), "Vulnerability assessment of buried pipelines: a case study" in Front. Geotech. Eng., v. 3 (2014), p. 24
  13. EJMA (2008), "Standards of the Expansion Joint Manufacturers Association, Inc"
  14. Gantes, Charis J. / Bouckovalas, George (2013): Seismic Verification of the High Pressure Natural Gas Pipeline Komotini–Alexandroupoulis–Kipi in Areas of Active Fault Crossings. Dans: Structural Engineering International, v. 23, n. 2 (mai 2013).

    https://doi.org/10.2749/101686613x13439149157164

  15. Gresnigt (1986), "Plastic Design of Buried Pipelines"
  16. Ha, Da / Abdoun, Tarek H. / O'Rourke, Michael J. / Symans, Michael D. / O'Rourke, Thomas D. (2010): Earthquake Faulting Effects on Buried Pipelines – Case History and Centrifuge Study. Dans: Journal of Earthquake Engineering, v. 14, n. 5 ( 2010).

    https://doi.org/10.1080/13632460903527955

  17. Hegde (2015), "Experimental and numerical studies on protection of buried pipelines and underground utilities using geocells" in Geotext. Geomembr., v. 43 (2015), p. 372

    https://doi.org/10.1016/j.geotexmem.2015.04.010

  18. Honegger (2004), "Trans-Alaska pipeline system performance in the 2002 Denali Fault, Alaska, Earthquake" in Earth. Spectra, v. 20 (2004), p. 707

    https://doi.org/10.1193/1.1779239

  19. Indian Institute of Technology Kanpur, Gujarat State Disaster Management Authority (2007), "Guidelines for Seismic Design of Buried Pipelines"
  20. Joshi, Shantanu / Prashant, Amit / Deb, Arghya / Jain, Sudhir K. (2011): Analysis of buried pipelines subjected to reverse fault motion. Dans: Soil Dynamics and Earthquake Engineering, v. 31, n. 7 (juillet 2011).

    https://doi.org/10.1016/j.soildyn.2011.02.003

  21. Karamanos (2014), ""Seismic design of buried steel water pipelines,”", p. 1005
  22. Karamitros, D. K. / Bouckovalas, G. D. / Kouretzis, G. P. / Gkesouli, V. (2011): An analytical method for strength verification of buried steel pipelines at normal fault crossings. Dans: Soil Dynamics and Earthquake Engineering, v. 31, n. 11 (novembre 2011).

    https://doi.org/10.1016/j.soildyn.2011.05.012

  23. Karamitros, Dimitrios K. / Bouckovalas, George D. / Kouretzis, George P. (2007): Stress analysis of buried steel pipelines at strike-slip fault crossings. Dans: Soil Dynamics and Earthquake Engineering, v. 27, n. 3 (mars 2007).

    https://doi.org/10.1016/j.soildyn.2006.08.001

  24. Kennedy (1977), "Fault movement effects of buried oil pipeline" in ASCE J. Transp. Eng., v. 103 (1977), p. 617
  25. Kennedy (1983), ""Fault crossing design for buried gas oil pipeline,”"
  26. Kokavessis (2006), ""Finite element modeling of buried pipelines subjected to seismic loads: soil structure interaction using contact elements,”"

    https://doi.org/10.1115/PVP2006-ICPVT-11-93228

  27. Liu (2009), "Strain-based design criteria of pipelines" in J. Loss Prev. Process Ind., v. 22 (2009), p. 884

    https://doi.org/10.1016/j.jlp.2009.07.010

  28. Liu (2016), "A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings" in J. Nat. Gas Sci. Eng., v. 32 (2016), p. 465

    https://doi.org/10.1016/j.jngse.2016.04.054

  29. Melissianos (2015), ""Probabilistic assessment of innovative mitigating measures for buried steel pipeline – fault crossing,”"

    https://doi.org/10.1115/PVP2015-45345

  30. Melissianos, Vasileios E. / Korakitis, Georgios P. / Gantes, Charis J. / Bouckovalas, George D. (2016): Numerical evaluation of the effectiveness of flexible joints in buried pipelines subjected to strike-slip fault rupture. Dans: Soil Dynamics and Earthquake Engineering, v. 90 (novembre 2016).

    https://doi.org/10.1016/j.soildyn.2016.09.012

  31. Melissianos, Vasileios E. / Lignos, Xenofon A. / Bachas, Konstantinos K. / Gantes, Charis J. (2017): Experimental investigation of pipes with flexible joints under fault rupture. Dans: Journal of Constructional Steel Research, v. 128 (janvier 2017).

    https://doi.org/10.1016/j.jcsr.2016.09.026

  32. Mohr (2003), "Strain-Based Design of Pipelines – Project No. 45892GTH"
  33. Mokhtari, M. / Alavi Nia, A. (2015): The influence of using CFRP wraps on performance of buried steel pipelines under permanent ground deformations. Dans: Soil Dynamics and Earthquake Engineering, v. 73 (juin 2015).

    https://doi.org/10.1016/j.soildyn.2015.02.014

  34. Monroy-Concha (2013), "Soil Restraints on Steel Buried Pipelines Crossing Active Seismic Faults"
  35. Newmark (1975), ""Pipeline design to resist large fault displacement,”", p. 416
  36. Hasegawa (2014), "Development of "steel pipe for crossing fault (SPF)” using buckling pattern for water pipelines" in JFE GIHO, v. 31 (2014), p. 61
  37. Odina (2009), ""Seismic fault displacement of buried pipeline using continuum finite element methods,”"

    https://doi.org/10.1115/OMAE2009-79739

  38. Ogawa (2004), ""Numerical study for rupture behavior of buried gas pipeline subjected to seismic fault displacement,”"
  39. O’Rourke (2012), "Seismic Design of Buried and Offshore Pipelines"
  40. Peng (2009), "Pipe Stress Engineering"

    https://doi.org/10.1115/1.802854

  41. Sim, W. W. / Towhata, I. / Yamada, S. / Moinet, G. J-M (2012): Shaking table tests modelling small diameter pipes crossing a vertical fault. Dans: Soil Dynamics and Earthquake Engineering, v. 35 (avril 2012).

    https://doi.org/10.1016/j.soildyn.2011.11.005

  42. Takada, Shiro / Hassani, Nemat / Fukuda, Katsumi (2001): A new proposal for simplified design of buried steel pipes crossing active faults. Dans: Earthquake Engineering and Structural Dynamics, v. 30, n. 8 (août 2001).

    https://doi.org/10.1002/eqe.62

  43. Trifonov (2015), "Numerical stress-strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects" in ASCE J. Pipeline Syst. Eng. Pract., v. 6 (2015), p. 1

    https://doi.org/10.1061/(ASCE)PS.1949-1204.0000177

  44. Trifonov, Oleg V. / Cherniy, Vladimir P. (2010): A semi-analytical approach to a nonlinear stress–strain analysis of buried steel pipelines crossing active faults. Dans: Soil Dynamics and Earthquake Engineering, v. 30, n. 11 (novembre 2010).

    https://doi.org/10.1016/j.soildyn.2010.06.002

  45. Trifonov, Oleg V. / Cherniy, Vladimir P. (2012): Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads. Dans: Soil Dynamics and Earthquake Engineering, v. 33 (février 2012).

    https://doi.org/10.1016/j.soildyn.2011.10.001

  46. Trifonov (2016), "Application of composite wraps for strengthening of buried steel pipelines crossing active faults" in ASME J. Press. Vessel Technol., v. 138 (2016), p. 060902

    https://doi.org/10.1115/1.4032915

  47. Uckan, E. / Akbas, B. / Shen, J. / Rou, W. / Paolacci, F. (2015): A simplified analysis model for determining the seismic response of buried steel pipes at strike-slip fault crossings. Dans: Soil Dynamics and Earthquake Engineering, v. 75 (août 2015).

    https://doi.org/10.1016/j.soildyn.2015.03.001

  48. Vazouras, Polynikis / Dakoulas, Panos / Karamanos, Spyros A. (2015): Pipe–soil interaction and pipeline performance under strike–slip fault movements. Dans: Soil Dynamics and Earthquake Engineering, v. 72 (mai 2015).

    https://doi.org/10.1016/j.soildyn.2015.01.014

  49. Vazouras, Polynikis / Karamanos, Spyros A. / Dakoulas, Panos (2010): Finite element analysis of buried steel pipelines under strike-slip fault displacements. Dans: Soil Dynamics and Earthquake Engineering, v. 30, n. 11 (novembre 2010).

    https://doi.org/10.1016/j.soildyn.2010.06.011

  50. Vazouras, Polynikis / Karamanos, Spyros A. / Dakoulas, Panos (2012): Mechanical behavior of buried steel pipes crossing active strike-slip faults. Dans: Soil Dynamics and Earthquake Engineering, v. 41 (octobre 2012).

    https://doi.org/10.1016/j.soildyn.2012.05.012

  51. Wang (1995), ""Parametric study of buried pipelines due to large fault movement,”", p. 152
  52. Wang, Leon Ru-Liang / Yeh, Yaw-Hue1 (1985): A refined seismic analysis and design of buried pipeline for fault movement. Dans: Earthquake Engineering and Structural Dynamics, v. 13, n. 1 (janvier 1985).

    https://doi.org/10.1002/eqe.4290130109

  53. Zhang (2014), "Buckling behavior analysis of buried gas pipeline under strike-slip fault displacement" in J. Nat. Gas Sci. Eng., v. 21 (2014), p. 921

    https://doi.org/10.1016/j.jngse.2014.10.028

  54. Zhang (2016), "Failure analysis of directional crossing pipeline and design of a protective device" in Eng. Fail. Anal., v. 66 (2016), p. 187

    https://doi.org/10.1016/j.engfailanal.2016.04.019

  55. Zhang, Lisong / Zhao, Xinbo / Yan, Xiangzhen / Yang, Xiujuan (2016): A new finite element model of buried steel pipelines crossing strike-slip faults considering equivalent boundary springs. Dans: Engineering Structures, v. 123 (septembre 2016).

    https://doi.org/10.1016/j.engstruct.2016.05.042

  56. Zhang (2016b), "Elastoplastic analysis of mechanical response of buried pipelines under strike-slip faults" in ASCE Int. J. Geomech., v. 04016109 (2016b), p. 1

    https://doi.org/10.1061/(ASCE)GM.1943-5622.0000790

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10379453
  • Publié(e) le:
    11.11.2019
  • Modifié(e) le:
    11.11.2019