0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evaluation of Machinability in Turning of Engineering Alloys by Applying Artificial Neural Networks

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: The Open Construction and Building Technology Journal, , n. 1, v. 8
Page(s): 389-399
DOI: 10.2174/1874836801408010389
Abstrait:

The present paper investigates the influence of main cutting parameters on the machinability during turning process for three typical materials namely AISI D6 tool steel, Ti6Al4V ELI and CuZn39Pb3 brass, all three under dry cutting environment. Spindle speed, feed rate and depth of cut were selected for study whilst arithmetic surface roughness average (Ra) and main cutting force component (FC) were treated as quality objectives characterizing machinability. For the aforementioned materials a full factorial design of experiments was conducted to exploit main effects and interactions among parameters it terms of quality objectives. The results obtained from dry turning experiments were utilized as a data set to test, train and validate a feed-forward back propagation artificial neural network for machinability prediction regarding all three materials. The work presents the results obtained from the aforementioned experimental effort under an extensive state-of-the-art survey concerning neural network technology and implementation to machining optimization problems.

Copyright: © 2014 Nikolaos M. Vaxevanidis, John D. Kechagias, Nikolaos A. Fountas, Dimitrios E. Manolakos
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10384230
  • Publié(e) le:
    23.11.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine