0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evaluation of Ground Displacements Caused by Installing Jet Grouted Columns Using Machine Learning Methods

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-11
DOI: 10.1155/2020/8857293
Abstrait:

During the jet grouting process, large volumes of high pressurized fluids injected into the soils will cause significant ground displacements, which may bring harmful impacts on surrounding environment. Therefore, it is essential to provide an accurate estimation of the ground displacement in the design stage. Based on multiple nonlinear regression (MNLR) and support vector regression (SVR), the prediction approaches are established, respectively. The column radius (Rc), Young’s modulus (E), and distance from column center to target point (LOA) are selected as the input parameters, while the displacement of target point A at the radial direction (δA) is taken as the output parameter. Comparisons results on the prediction performance of ground displacements indicate that the MNLR-based approach has a better prediction effect. The design charts of the MNLR-based approach for predicting the ground displacement are created, which will be helpful for the practicing engineers to get a quick estimation.

Copyright: © Zhi-Feng Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10444040
  • Publié(e) le:
    05.10.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine