0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Evaluating the efficacy of antimicrobial additives against biogenic acidification in simulated wastewater exposure solutions

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: RILEM Technical Letters, , v. 4
Page(s): 49-56
DOI: 10.21809/rilemtechlett.2019.62
Abstrait:

Microbially Induced Corrosion of Concrete (MICC) is a progressive three-stage deterioration process that is primarily associated with sulfur-oxidizing bacteria (SOB). One strategy for mitigating MICC is the use of antimicrobial additives. It is hypothesized that the performance of antimicrobial products is influenced by the pH of the environment, the bacterial population, and the level of bacterial activity. To test this hypothesis, three bacterial activity-population levels were tested in environments with different pH levels to evaluate the efficacy of a typical antimicrobial product against planktonic SOB. The ability of the antimicrobial product to prevent or delay the biogenic acidification was considered as the criterion for its efficacy. The tested antimicrobial product was successful in delaying or preventing MICC with low and moderate bacterial populations and activity for all pH levels greater than 4. Lower pH levels were not tested in this investigation.  Antimicrobial products were successful in delaying or preventing MICC with severe bacterial populations and activity for all pH levels tested greater than 6. The results support the main hypothesis of the research; therefore, the selection of whether to utilize an antimicrobial product requires an understanding of the operational pH of the environment as well as knowledge on the target bacterial population and activity.

License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10412157
  • Publié(e) le:
    08.02.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine