Estimating the Influence of Improper Workplace Environment on Human Error: Posterior Predictive Analysis
Auteur(s): |
Pin-chao Liao
Mei Liu Yu-Sung Su Hui Shi Xintong Luo |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-11 |
DOI: | 10.1155/2018/5078906 |
Abstrait: |
A model for identifying, analyzing, and quantifying the mechanisms for the influence of improper workplace environment on human error in elevator installation is proposed in this study. By combining a modification of a human error model with real-world inspection data collected by an elevator installation company, the influence paths of improper workplace environment on the conditional probability of human error were quantified using a Bayesian network parameter-learning estimation method and posterior predictive simulation. Under the condition of an improper workplace environment, the probability of human error increased by 80% of its original value, a factor much higher than that resulting from improper management. The most probable influence was found to be improper workmanship and changes in the information required by the worker, thus triggering cognitive failure and consequent unsafe actions by workers. The proposed methodology (posterior predictive simulation) provides a new approach in construction studies for quantifying the probabilistic levels of various causal paths, and the results show the key mechanism for the influence of improper workplace environment on human error using real-world mechanical installation data. |
Copyright: | © 2018 Pin-Chao Liao et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.61 MB
- Informations
sur cette fiche - Reference-ID
10176610 - Publié(e) le:
30.11.2018 - Modifié(e) le:
02.06.2021