0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Estimating Heating Load in Residential Buildings Using Multi-Verse Optimizer, Self-Organizing Self-Adaptive, and Vortex Search Neural-Evolutionary Techniques

Auteur(s): ORCID

ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 12
Page(s): 1328
DOI: 10.3390/buildings12091328
Abstrait:

Using ANN algorithms to address optimization problems has substantially benefited recent research. This study assessed the heating load (HL) of residential buildings’ heating, ventilating, and air conditioning (HVAC) systems. Multi-layer perceptron (MLP) neural network is utilized in association with the MVO (multi-verse optimizer), VSA (vortex search algorithm), and SOSA (self-organizing self-adaptive) algorithms to solve the computational challenges compounded by the model’s complexity. In a dataset that includes independent factors like overall height and glazing area, orientation, wall area, compactness, and the distribution of glazing area, HL is a goal factor. It was revealed that metaheuristic ensembles based on the MVOMLP and VSAMLP metaheuristics had a solid ability to recognize non-linear relationships between these variables. In terms of performance, the MVO-MLP model was considered superior to the VSA-MLP and SOSA-MLP models.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10692790
  • Publié(e) le:
    23.09.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine