0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Environmental Effects in Life Cycle Assessment of Machine-Vision-Driven Spall Repair Material Estimation for Sustainable Road Maintenance

Auteur(s): ORCID
ORCID



ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 2, v. 15
Page(s): 162
DOI: 10.3390/buildings15020162
Abstrait:

Portland cement concrete is widely used in road construction due to its durability and minimal maintenance needs. However, its susceptibility to spall highlights the drawbacks of conventional repair methods, including cost inefficiencies, delays, environmental impacts, and safety risks from road closures. To address these challenges, this study evaluated the environmental benefits of a spall detection and repair method employing artificial-intelligence-based computer vision technology. By utilizing machine vision techniques, this approach detects spall damage without road closures and automates the calculation of repair areas and material requirements through a proprietary estimation program. Environmental impact assessments were conducted using life cycle assessment across three frameworks, TRACI, ReCiPe, and ILCD, to compare this method with conventional practices. The results revealed a 79% reduction in the overall environmental impacts, including significant decreases in global warming due to shorter road closures and reduced material waste. Resource usage improved through optimized processes, and air pollution decreased, with lower emissions of smog and particulates. This study highlights the potential of machine-vision-driven repair material quantity takeoff as a more efficient and sustainable alternative. The results of this study will help institutional engineers and practitioners adopt sustainable strategies for green infrastructure repair and integrate them into various infrastructure maintenance practices to contribute to the development of sustainable urban environments.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10816180
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine