Enhancing Tower Crane Safety: A UAV-Based Intelligent Inspection Approach
Auteur(s): |
Xin Jiao
Na Wu Xin Zhang Jian Fan Zhenwei Cai Ying Wang Zhenglong Zhou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 24 avril 2024, n. 5, v. 14 |
Page(s): | 1420 |
DOI: | 10.3390/buildings14051420 |
Abstrait: |
Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents a novel approach to tower crane safety inspections using Unmanned Aerial Vehicles (UAVs) equipped with high-definition cameras and an intelligent inspection APP system. The system utilizes real-time kinematic (RTK) positioning and digital image processing to perform efficient and comprehensive inspections, reducing the reliance on manual labor and associated risks. A case study demonstrated the method’s practicality and effectiveness, with the UAV inspections capable of identifying 76.3% of major hazards, 64.8% of significant hazards, and 76.2% of general hazards within a 30-minute timeframe. Preliminary identification rates were also promising. Despite the initial requirement for manual drone piloting and the current manual review of images, the approach shows significant potential for enhancing safety in the construction industry. Future work will focus on integrating AI for hazard recognition and automating the inspection process further. The proposed method marks a step forward in tower crane safety management, offering a more efficient and accurate alternative to traditional inspection methods. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
6.3 MB
- Informations
sur cette fiche - Reference-ID
10787838 - Publié(e) le:
20.06.2024 - Modifié(e) le:
20.06.2024