Enhancing the Damage Detection and Classification of Unknown Classes with a Hybrid Supervised–Unsupervised Approach
Auteur(s): |
Lorenzo Stagi
Lorenzo Sclafani Eleonora M. Tronci Raimondo Betti Silvia Milana Antonio Culla Nicola Roveri Antonio Carcaterra |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, 6 mars 2024, n. 3, v. 9 |
Page(s): | 40 |
DOI: | 10.3390/infrastructures9030040 |
Abstrait: |
Most damage-assessment strategies for dynamic systems only distinguish between undamaged and damaged conditions without recognizing the level or type of damage or considering unseen conditions. This paper proposes a novel framework for structural health monitoring (SHM) that combines supervised and unsupervised learning techniques to assess damage using a system’s structural response (e.g., the acceleration response of big infrastructures). The objective is to enhance the benefits of a supervised learning framework while addressing the challenges of working in an SHM context. The proposed framework uses a Linear Discriminant Analysis (LDA)/Probabilistic Linear Discriminant Analysis (PLDA) strategy that enables learning the distributions of known classes and the performance of probabilistic estimations on new incoming data. The methodology is developed and proposed in two versions. The first version is used in the context of controlled, conditioned monitoring or for post-damage assessment, while the second analyzes the single observational data. Both strategies are built in an automatic framework able to classify known conditions and recognize unseen damage classes, which are then used to update the classification algorithm. The proposed framework’s effectiveness is first tested considering the acceleration response of a numerically simulated 12-degree-of-freedom system. Then, the methodology’s practicality is validated further by adopting the experimental monitoring data of the benchmark study case of the Z24 bridge. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
27 MB
- Informations
sur cette fiche - Reference-ID
10776394 - Publié(e) le:
29.04.2024 - Modifié(e) le:
05.06.2024