0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Enhancement of Mechanical and Chloride Binding Properties in Seawater Cement Using a Novel Carbon Nanomaterial

Auteur(s):


ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 14
Page(s): 4020
DOI: 10.3390/buildings14124020
Abstrait:

Chloride binding technology can effectively reduce the content of free chloride ions in seawater (used for cementitious materials), thereby extending the service life of seawater concrete structures. Currently, affordable and highly dispersed nanomaterials that can enhance the chloride binding capability of seawater cement are finite. This paper presents the first experimental study on N-doped graphene quantum dots (NGQDs), an innovative carbon nanomaterial with low price and high dispersibility, to strengthen the mechanical and chloride binding capabilities of seawater cement. Concretely, NGQDs are prepared through the hydrothermal process. The morphology and structure of NGQDs are measured by TEM, AFM, FTIR, and XPS. And the strengths and chloride binding performance of different specimens are analyzed by compressive/flexural strength tests and chloride adsorption equilibrium tests. The phase compositions of various specimens are analyzed by XRD, TGA/DTG, and SEM. The consequences indicate that the unique structure of the prepared NGQDs endows them with excellent water solubility and dispersibility. Notably, the introduction of NGQDs enhances the mechanical performance of seawater cement and 0.05 wt.% NGQDs have the greatest improvement effect. The compressive and flexural strengths of seawater cement containing 0.05 wt.% NGQDs increase by 8.21% and 25.77% after 28 d curing, respectively. Additionally, the seawater cement containing 0.2 wt.% NGQDs have the best chloride binding capability and are 41.08% higher than the blank group. More importantly, the chloride binding mechanism is that NGQDs accelerate seawater cement hydration, resulting in an increased formation of hydrated calcium silicate (C–S–H) and Friedel’s salt (Fs), thereby strengthening the physisorption and chemical combination of chloride. This study highlights an inexpensive and highly dispersible nanomaterial to heighten the stability of seawater concrete structures, opening up a new path for the better utilization of seawater resources.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810647
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    17.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine