An Enhanced Beam Model for the Analysis of Masonry Walls
Auteur(s): |
Massimiliano Lucchesi
Barbara Pintucchi Nicola Zani |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | The Open Construction and Building Technology Journal, novembre 2019, n. 1, v. 13 |
Page(s): | 52-66 |
DOI: | 10.2174/1874836801913010052 |
Abstrait: |
Background:Some typologies of masonry constructions (e.g.towers or walls with openings) can be reasonably studied through simple beam or frame-like models. For these structures, shear mechanisms often play an important role inducing failure and collapse. Objective:The paper presents an enriched beam model for studying the in-plane response of masonry walls. Initially formulated for masonry columns, towers and masonry slender structures in general, the model is now modified in order to also capture the shear failure mechanisms, in addition to the flexural ones. Methods:Starting with a one-dimensional no-tension model, a strength domain in the plane of the axial and tangential stress of the beam has been added, which has been defined by limiting both the stress shear component with respect to any possible direction and the main compressive stress. Results:The model, implemented in the FEM computational code MADY, allows for short computational times in studying the response of single panels as well as walls with openings. Conclusion:Comparisons with some experimental results from literature and some numerical results from more refined 2D models show the effectiveness and accuracy of the model’s predictions in terms of global and local response. |
Copyright: | © 2019 Massimiliano Lucchesi, Barbara Pintucchi, Nicola Zani |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
7.68 MB
- Informations
sur cette fiche - Reference-ID
10381035 - Publié(e) le:
22.11.2019 - Modifié(e) le:
02.06.2021