0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Energy Dissipation in Frame Structures using Sliding Lever Mechanism Technique

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: The Open Construction and Building Technology Journal, , n. 1, v. 15
Page(s): 1-16
DOI: 10.2174/1874836802115010001
Abstrait:

Aim:

The aim of this study was to investigate the seismic energy dissipation mechanism of a novel and newly proposed sliding lever damping energy dissipation through dynamic shake table testing.

Background:

Typical energy dissipation systems consist of brace members and installed dampers, which are directly connected to structural members such as beams, columns and joint regions. This can cause additional load concentrations and may require retrofitting or strengthening of existing structures. In order to avoid the load demand on the main structural system, a new energy dissipation technique based on a sliding lever mechanism is proposed and tested through dynamic testing.

Objective:

The objective of this study was to test a new sliding lever damping energy dissipation through dynamic shake table testing within the scope of steel frame structures.

Methods:

In order to investigate the proposed energy dissipation configuration, a 1/3rdreduced scaled, three-story and one bay steel frame model has been fabricated and tested in a uni-directional shaking with increasing excitation and, without and with the new technique. For the sliding lever energy dissipation configuration, a non-structural frame (i.e., carrying no gravity loads) has been constructed and provided with an installed ramp-damper assembly. The shaking responses in the form of acceleration and displacement histories have been obtained during the experimental program and compared in order to check the efficiency of the proposed configuration.

Results:

The results showed a reduction of 55% to 6% in stories deflections and 36% to 12% in acceleration with the newly proposed sliding lever mechanism energy dissipation technique. The top story peak displacements for the damped frame case decreased by 36.55% in case of 0.1 g, 37.95% in case of 0.2g, 31.89% in case of 0.3g, 38.05% in case of 0.4g, 29.37% in case of 0.5g and 12.06% in case of 0.6g shaking excitation.

Conclusion:

It has been confirmed from the current experimental studies that the new configuration was quite effective in reducing the overall displacement and acceleration response. The reduction in the structural response parameters was very significant during low excitation shaking, whereas, with the increase in shaking intensities, the responses varied with much less difference.

Copyright: © 2021 Muhammad Rizwan, Muhammad Fahad, Muhammad Naeem, Mohammad Adil
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10602850
  • Publié(e) le:
    17.04.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine