Elastic Stability of Concrete Beam-Columns
Part I – Static Stability
Auteur(s): |
Mamta R. Sharma
Arbind K. Singh Gurmail S. Benipal |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | International Journal of Structural Stability and Dynamics, janvier 2017, n. 1, v. 17 |
Page(s): | 1750094 |
DOI: | 10.1142/s0219455417500948 |
Abstrait: |
Following the empirical-computational methodology, the contemporary investigations deal with inelastic stability and dynamics of concrete beam-columns. Even under service loads, the concrete structures exhibit physical nonlinearity due to presence of axio-flexural cracks. The objective of the present paper is to analyze the static and dynamic stability of conservative physically nonlinear fully cracked flanged concrete beam–columns. In this paper, using proper reference frames, analytical expressions are developed for the lateral displacement and stiffness of a flanged concrete cantilever under axial compressive and lateral forces. Two critical values of both the axial and lateral loads are identified. For constant lateral force smaller than its first critical value, the concrete beam–columns exhibit brittle buckling mode. Higher lateral forces lesser than the second critical value introduce alternate stable and unstable domains with increase in axial force. The lateral stiffness is predicted to vanish when the axial loads reach the critical values and when the limiting displacement is reached for axial load exceeding its second critical value. The load-space is partitioned into stable and unstable regions. Accessibility of these equilibrium states in the load space has been investigated. Such distinguishing aspects of the predicted behavior of elastic concrete beam–columns are discussed. Their dynamic stability is investigated in second part of the paper. |
- Informations
sur cette fiche - Reference-ID
10352443 - Publié(e) le:
14.08.2019 - Modifié(e) le:
14.08.2019