Efficient seismic fragility assessment method for a frictional isolated bridge constrained by shape memory alloy cables under pulse-like ground motion
Auteur(s): |
Yuntao Zhu
Yiwei Shu Jian Zhong |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Smart Materials and Structures, 2 février 2024, n. 3, v. 33 |
Page(s): | 035014 |
DOI: | 10.1088/1361-665x/ad223b |
Abstrait: |
Utilizing shape memory alloy (SMA) cables to constrain frictional isolated bridges is considered an efficient approach to limit bearing displacement and prevent serious earthquake damage. Accurate seismic fragility assessments of this kind of structure are crucial for aseismic decision making. However, traditional assessment methods cannot quantitatively describe the impact of the pulse effect on pulse-type seismic motions, which may lead to inaccurate assessment results. Therefore, this study deduced a novel equation for seismic fragility assessment that considers the pulse effect. Firstly, the impact of the pulse effect is quantified. Then, a multivariable probabilistic seismic demand model (MV-PSDM) is developed that is conditioned on the pulse period, peak ground velocity, structural period, maximum friction coefficient and SMA consumption. Based on the MV-PSDM, an effective approach for predicting structural seismic vulnerability is recommended, which does not require finite element modeling or nonlinear time-history analysis. Finally, a novel equation for calculating the intensity measure corresponding to 50% damage probability is deduced. The results indicate that increased friction coefficients and SMA consumption can enhance structural seismic safety under pulse-type ground motions. However, when the ratio of pulse period to structural period is too small, increased friction coefficients or SMA consumption have no meaningful effect on the seismic fragility of the structure. |
- Informations
sur cette fiche - Reference-ID
10758167 - Publié(e) le:
15.03.2024 - Modifié(e) le:
15.03.2024