0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Efficient Methods for Structural Optimization With Frequency Constraints Using Higher Order Approximations

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 3, v. 8
Page(s): 439-450
DOI: 10.1142/s0219455408002739
Abstrait:

Presented herein are four different methods for the optimum design of structures subject to multiple natural frequency constraints. During the optimization process the optimum cross-sectional dimensions of elements are determined. These methods are robust and efficient in terms of the number of eigenvalue analyses required, as well as the overall computational time for the optimum design. A new third order approximate function is presented for the structural response quantities, as functions of the cross-sectional properties, and four different methods for the optimum design are defined based on this approximate function. The main features of the proposed function are that only the diagonal terms of higher order derivative matrices are employed, and these derivatives are established by the available first order derivatives. The first order exact derivatives are obtained from a sensitivity analysis at the previous design points. We show that this approximate function creates high quality approximations of the structural responses, such as the frequencies. Examples are presented and the efficiency and quality of the proposed methods are discussed and compared.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455408002739.
  • Informations
    sur cette fiche
  • Reference-ID
    10353114
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine