• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

An efficient mechanical-probabilistic approach for the collapse modelling of RC structures

Auteur(s):


Médium: article de revue
Langue(s): en 
Publié dans: Revista IBRACON de Estruturas e Materiais, , n. 2, v. 12
Page(s): 386-397
DOI: 10.1590/s1983-41952019000200010
Abstrait:

The reinforced concrete (RC) structures are widely utilized around the world. However, the modelling of its complex mechanical behaviour by efficient numerical approaches has been presented marginally in the literature. The efficient approaches enable the accurate and the realistic representation of the mechanical phenomena involved and are computationally efficient for analysing complex structures. In the present study, the improved version of the lumped damage model is coupled to the Monte Carlo simulation method to represent the mechanical-probabilistic behaviour of RC structures. In such model, the concrete cracking and reinforcements’ yield are represented accurately. Moreover, this damage approach enables the accurate modelling of failure scenarios, which are based on the damage variable. Furthermore, this coupled model enables the determination of the collapse modelling accounting for uncertainties, which is the main contribution of the present study. One simple supported RC beam and one 2D RC frame are analysed in the probabilistic context. The accurate results are obtained for the probabilistic collapse path as well as its changes as a function of the loading conditions and material properties uncertainties.

License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10413213
  • Publié(e) le:
    12.02.2020
  • Modifié(e) le:
    12.02.2020