0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effects of using chemical admixture with nanosilica in the consistency and mechanical strength of concrete

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Revista IBRACON de Estruturas e Materiais, , n. 2, v. 12
Page(s): 371-385
DOI: 10.1590/s1983-41952019000200009
Abstrait:

The concrete’s performance depends on its behavior in the fresh and hardened states, since the workability corroborates for the transport and application processes of the material, while the mechanical strength guarantees structural effectiveness and functionality. Generally, studies of nanosilica (nS) are focused on performance analysis in the hardened state and they are founded on the use of the mineral admixture in dry grains. Thus, this article aims to evaluate the effects of superplasticizer admixture use with nanosilica in colloidal suspension in the consistency and mechanical strength of the concrete. Two concrete mixtures were produced with the same materials and identical proportions, however with different superplasticizes, one with nanosilica (CnS) and the other without nanosilica (CC) used as reference to analyse the effects of the presence of mineral admixture in the development of the consistency and the mechanical strength of the concrete. For evaluation of these properties were carried slump tests as a function of time and compressive strength at 28 days, according to ABNT NBR 10342 and NBR 5739, respectively. The results showed that the concrete without nanosilica presented longer time available for handling, achieving 135 minutes, extending its period of slump loss for fifteen minutes besides the concrete with nanosilica, which reached 120 minutes; and, also presented higher slump values throughout the test, reaching up to 60.0 mm above at 75 minutes after the beginning of test. However, the CnS presented better performance in the hardened state, achieving the C70 high performance concrete class with 70.92 MPa; while the CC reached 65.57 Mpa, fitting within the C60 class.

License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10413215
  • Publié(e) le:
    12.02.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine