• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effects of Hysteresis and Negative Stiffness on Seismic Response Reduction: A Case Study Based on the 1999 Athens, Greece Earthquake

  1. Abrahamson (1992), "Non-stationary spectral matching" in Seismol. Res. Lett, v. 63 (1992), p. 30
  2. Al Shudeifat (2014), "Highly efficient nonlinear energy sink" in Nonlinear Dyn, v. 76 (2014), p. 1905

    https://doi.org/10.1007/s11071-014-1256-x

  3. Antoniadis (2015), "Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element" in J. Sound Vib, v. 346 (2015), p. 37

    https://doi.org/10.1016/j.jsv.2015.02.028

  4. Boroson (2017), "Optimization under uncertainty of parallel nonlinear energy sinks" in J. Sound Vib, v. 394 (2017), p. 451

    https://doi.org/10.1016/j.jsv.2016.12.043

  5. Bouc (1967), "Forced Vibrations of a Mechanical System with Hysteresis"Proceedings of the 4th Conference on Non-linear Oscillations"
  6. Casciati (2009), "Performance of multi-TMD in the towers of suspension bridges" in J. Vib. Control, v. 15 (2009), p. 821

    https://doi.org/10.1177/1077546308091455

  7. Charalampakis (2010), "Parameters of Bouc-Wen hysteretic model revisited"9th HSTAM International Congress on Mechanics"
  8. Charalampakis (2015), "The response and dissipated energy of Bouc–Wen hysteretic model revisited" in Arch. Appl. Mech, v. 85 (2015), p. 1209

    https://doi.org/10.1007/s00419-014-0937-8

  9. Charalampakis, A. E. / Dimou, C. K. (2010): Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Dans: Computers & Structures, v. 88, n. 21-22 (novembre 2010).

    https://doi.org/10.1016/j.compstruc.2010.06.009

  10. Charalampakis (2008), "On the response and dissipated energy of Bouc–Wen hysteretic model" in J. Sound Vib, v. 309 (2008), p. 887

    https://doi.org/10.1016/j.jsv.2007.07.080

  11. Debnath (2016), "Multi-modal vibration control of truss bridges with tuned mass dampers under general loading" in J. Vib. Control, v. 22 (2016), p. 4121

    https://doi.org/10.1177/1077546315571172

  12. Eatherton (2010), "seismic design and behavior of steel frames with controlled rocking—Part I: concepts and Quasi-static subassembly testing"Structures Congress 2010", p. 1523

    https://doi.org/10.1061/41130(369)138

  13. Frahm H. Device for Damping Vibrations of Bodies, 1909
  14. Gendelman (2012), "Dynamics of an eccentric rotational nonlinear energy sink" in J. Appl. Mech, v. 79 (2012), p. 11012

    https://doi.org/10.1115/1.4005402

  15. Georgiadis (2005), "Shock isolation through passive energy pumping caused by non-smooth nonlinearities" in Int. J. Bifurc. Chaos, v. 15 (2005), p. 1989

    https://doi.org/10.1142/S0218127405013101

  16. Gourdon (2007), "Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results" in J. Sound Vib, v. 300 (2007), p. 522

    https://doi.org/10.1016/j.jsv.2006.06.074

  17. Han, Sang-Jun / Tsopelas, Panos / Baz, A. (2006): Active/passive Seismic Control of Structures. Dans: Journal of Earthquake Engineering, v. 10, n. 4 ( 2006).

    https://doi.org/10.1080/13632460609350607

  18. Hancock, Jonathan / Watson-Lamprey, Jennie / Abrahamson, Norman A. / Bommer, Julian J. / Markatis, Alexandros (2006): An Improved Method Of Matching Response Spectra Of Recorded Earthquake Ground Motion Using Wavelets. Dans: Journal of Earthquake Engineering, v. 10, n. 1 ( 2006).

    https://doi.org/10.1080/13632460609350629

  19. Hartog (1956), "Mechanical Vibrations"
  20. Katsikadelis (2016), "A new direct time integration method for the semi-discrete parabolic equations" in Eng. Anal. Bound. Elem, v. 73 (2016), p. 181

    https://doi.org/10.1016/j.enganabound.2016.09.009

  21. Lee (2009), "Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments" in Phys. D Nonlinear Phenom, v. 238 (2009), p. 1868

    https://doi.org/10.1016/j.physd.2009.06.013

  22. Liu (2013), "On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector" in J. Sound Vib., v. 332 (2013), p. 3359

    https://doi.org/10.1016/j.jsv.2012.10.037

  23. Lu, Liang / Liu, Xia / Chen, Junjie / Lu, Xilin (2017): Seismic performance of a controlled rocking reinforced concrete frame. Dans: Advances in Structural Engineering, v. 20, n. 1 (janvier 2017).

    https://doi.org/10.1177/1369433216645992

  24. Luft (1979), "Optimal tuned mass dampers for buildings" in J. Struct. Div, v. 105 (1979), p. 2766
  25. Ma (2004), "Parameter analysis of the differential model of hysteresis" in J. Appl. Mech, v. 71 (2004), p. 342

    https://doi.org/10.1115/1.1668082

  26. Ma (2010), "Seismic design and behavior of steel frames with controlled rocking—Part II: large scale shake table testing and system collapse analysis"Structures Congress 2010", p. 1534

    https://doi.org/10.1061/41130(369)139

  27. Maniatakis, Ch. A. / Spyrakos, C. C. (2012): A new methodology to determine elastic displacement spectra in the near-fault region. Dans: Soil Dynamics and Earthquake Engineering, v. 35 (avril 2012).

    https://doi.org/10.1016/j.soildyn.2011.10.005

  28. McNamara (1977), "Tuned Mass Dampers for buildings" in J. Struct. Div., v. 103 (1977), p. 1785
  29. Molyneux (1957), "Supports for Vibration Isolation"
  30. Nucera (2007), "Targeted energy transfers in vibro-impact oscillators for seismic mitigation" in Nonlinear Dyn, v. 50 (2007), p. 651

    https://doi.org/10.1007/s11071-006-9189-7

  31. Patel, C. C. / Jangid, R. S. (2011): Dynamic response of adjacent structures connected by friction damper. Dans: Earthquakes and Structures, v. 2, n. 2 (juin 2011).

    https://doi.org/10.12989/eas.2011.2.2.149

  32. Platus (1999), "Negative-stiffness-mechanism vibration isolation systems"International Society for Optics and Photonics", p. 98
  33. Price (2005), "Differential Evolution : A Practical Approach to Global Optimization"
  34. Quinn (2008), "Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part I" in J. Sound Vib, v. 311 (2008), p. 1228

    https://doi.org/10.1016/j.jsv.2007.10.026

  35. Rana, Rahul / Soong, T. T. (1998): Parametric study and simplified design of tuned mass dampers. Dans: Engineering Structures, v. 20, n. 3 (mars 1998).

    https://doi.org/10.1016/s0141-0296(97)00078-3

  36. Sapsis (2009), "Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part II, analytical study" in J. Sound Vib, v. 325 (2009), p. 297

    https://doi.org/10.1016/j.jsv.2009.03.004

  37. SeismoMatch - A Computer Program for Spectrum Matching of Earthquake Records2016
  38. Sigalov (2012), "Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink" in Nonlinear Dyn, v. 69 (2012), p. 1693

    https://doi.org/10.1007/s11071-012-0379-1

  39. Soong, T. T. / Reinhorn, A. M. / Aizawa, S. / Higashino, M. (1994): Recent structural applications of active control technology. Dans: Journal of Structural Control, v. 1, n. 1-2 (décembre 1994).

    https://doi.org/10.1002/stc.4300010101

  40. Storn (1997), "Differential Evolution – a simple and efficient heuristic for global optimization over continuous spaces" in J. Glob. Optim, v. 11 (1997), p. 341

    https://doi.org/10.1023/A:1008202821328

  41. Tani, Tsubasa / Maseki, Ryota / Takewaki, Izuru (2018): Innovative Seismic Response-Controlled System with Shear Wall and Concentrated Dampers in Lower Stories. Dans: Frontiers in Built Environment, v. 3 (février 2018).

    https://doi.org/10.3389/fbuil.2017.00057

  42. Taniguchi, Masaki / Fujita, Kohei / Tsuji, Masaaki / Takewaki, Izuru (2017): Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection. Dans: Frontiers in Built Environment, v. 2 (janvier 2017).

    https://doi.org/10.3389/fbuil.2016.00026

  43. Theodulidis (2004), "HEAD 1.0: A Unified HEllenic Accelerogram Database" in Seismol. Res. Lett, v. 75 (2004), p. 36

    https://doi.org/10.1785/gssrl.75.1.36

  44. Tsiatas (2018), "A new Hysteretic Nonlinear Energy Sink (HNES)" in Commun. Nonlinear Sci. Numer. Simul, v. 60 (2018), p. 1

    https://doi.org/10.1016/j.cnsns.2017.12.014

  45. Vakakis (2008), "Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II"
  46. Virgin (2008), "Vibration isolation using extreme geometric nonlinearity" in J. Sound Vib, v. 315 (2008), p. 721

    https://doi.org/10.1016/j.jsv.2007.12.025

  47. Watts (1883), "On a method of reducing the rolling of ships at sea" in Trans. Inst. Nav. Archit, v. 24 (1883), p. 165
  48. Weber, Benedikt / Feltrin, Glauco (2010): Assessment of long-term behavior of tuned mass dampers by system identification. Dans: Engineering Structures, v. 32, n. 11 (novembre 2010).

    https://doi.org/10.1016/j.engstruct.2010.08.011

  49. Wen (1976), "Method for random vibration of hysteretic systems" in J. Eng. Mech. Div, v. 102 (1976), p. 249
  50. Wierschem (2011), "Numerical study of nonlinear energy sinks for seismic response reduction"The 6th International Workshop on Advanced Smart Materials and Smart Structures Technology"
  51. Winterflood (2002), "High performance vibration isolation using springs in Euler column buckling mode" in Phys. Lett. A, v. 300 (2002), p. 122

    https://doi.org/10.1016/S0375-9601(02)00258-X

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10379354
  • Publié(e) le:
    11.11.2019
  • Modifié(e) le:
    11.11.2019