The Effects of Dolomite Powder Content and Type on the Yield Stress Relationship between Self-Compacting Mortar and Paste
Auteur(s): |
Jingbin Zhang
Hongyu Chen Yan Jia Pingcuo Zhuoma Miao Lv |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 23 juillet 2024, n. 8, v. 14 |
Page(s): | 2557 |
DOI: | 10.3390/buildings14082557 |
Abstrait: |
Self-compacting concrete (SCC), known for its excellent fluidity and self-compacting ability, is widely used in civil engineering. To enhance the comprehensive performance of SCC, dolomite powder (DP) is integrated as a substitute for cement. This study aims to analyze the impact of DP on the yield stress relationship between self-compacting mortar (SCM) and self-compacting paste (SCP) from a multi-scale perspective. A new predictive model for the yield stress relationship between SCM and SCP incorporating DP is established by improving the n value in the existing ϕe model, which characterizes the sensitivity of the mortar yield stress relative to changes in the paste yield stress. By conducting mini-slump flow tests on nine sets of cement–DP mixtures, it is found that DP impacts the yield stress relationship between SCM and SCP mainly through changes in the inter-particle filling effect, and the n value in the predictive model is roughly between 2.4 and 3.6. When the DP content is kept constant and the particle size is changed, the n value shows a strong positive linear relationship with the packing density of the paste (ϕe,p). The relationship between n and ϕe,p is derived using the linear fitting method, which improves the model’s predictive accuracy by 95.2%. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
13.82 MB
- Informations
sur cette fiche - Reference-ID
10795201 - Publié(e) le:
01.09.2024 - Modifié(e) le:
01.09.2024