0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effects of Anisotropic Mechanical Behavior on Nominal Moment Capability of 3D Printed Concrete Beam with Reinforcement

Auteur(s):
ORCID


ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 10, v. 14
Page(s): 3175
DOI: 10.3390/buildings14103175
Abstrait:

In this study, 3D-printed reinforced concrete beams were tested for flexural performance and compared with the analytical model based on the material test results. Two cementitious mixes (PSU and GCT) were designed for concrete printing and were mechanically tested and compared. Anisotropies in the compressive strength and modulus of elasticity of printed concrete were observed, applied to the analytical prediction of flexural bending behavior, and validated by actual test results. Significant differences between analytical predictions and experimental tests of the bending behaviors of the printed concrete beams were observed. Furthermore, higher compressive strengths and moduli of elasticity were observed when the loading direction was perpendicular to the printed layers or with the PSU mix. The effect of anisotropic mechanical properties on a reinforced beam was compared to the flexural bending tests for both mixes. The analytical model based on the material test results was compared to the flexural bending test results. The significant errors in the prediction of printed concrete’s structural performance, from 10% to 50%, suggest that factors other than reduced compressive strengths may influence the structural behaviors of printed concrete beams.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10804630
  • Publié(e) le:
    10.11.2024
  • Modifié(e) le:
    10.11.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine