Effect of Photovoltaic Energy-Saving Window Factors on Building Heating Load Under Three Control Modes
Auteur(s): |
Jiayi Li
Jianmei Wu Hongpeng Xu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 15 janvier 2025, n. 2, v. 15 |
Page(s): | 238 |
DOI: | 10.3390/buildings15020238 |
Abstrait: |
Photovoltaic (PV) glazing is widely used in the building sector for its power generation advantages. However, its low transmittance reduces solar heat gain, limiting energy-saving effectiveness in heating regions. To address this, the present study proposes a novel PV energy-saving window that reduces heating load by separately controlling its components—PV glazing, insulated shutter, and clear glazing—through three control modes: Mode 1 controls insulated shutter, Mode 2 controls insulated shutter and PV glazing, and Mode 3 controls insulated shutter and clear glazing. First, the energy-saving benefits of the window were confirmed through in situ testing. Next, using a validated model, the correlation between key factors and heating load was analyzed under the above three modes. Finally, the impact of configurations on heating load under the three control modes was clarified. The main findings are as follows: (1) When PV glazing is controlled, clear glazing layers become the primary factor influencing the heating load. (2) In Modes 1 and 3, the configurations have a greater impact on heating load, reducing it by 34.62% and 39.60%, respectively, while Mode 2 shows a reduction of 17.93%. (3) Mode 2 is the optimal control mode, confirming the effectiveness of controlling PV glazing to reduce heating load. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.25 MB
- Informations
sur cette fiche - Reference-ID
10816119 - Publié(e) le:
03.02.2025 - Modifié(e) le:
03.02.2025