Effect of Particle Size on the Hydraulic Characteristics of Mechanically and Biologically Treated Waste
Auteur(s): |
Zhenying Zhang
Xiufeng Pan Jiahe Zhang Hui Xu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-13 |
DOI: | 10.1155/2020/8888550 |
Abstrait: |
Mechanical biological treatment (MBT) is a waste processing technology that helps conserve resources and reduce emissions harmful to the environment. The treatment of municipal solid waste (MSW) using MBT is a hot topic in environmental geotechnical engineering. Permeability tests were carried out on MBT waste using a compression and permeability combined apparatus and a large-scale vertical permeability apparatus taking the influence of particle size into consideration. The permeability of samples with smaller particle sizes was found to be lower for the same pressure and dry mass (%) of component. The best-fit line between the logarithmic permeability and variables such as the dry density was linear. As the dry density increased or the void ratio decreased, the permeability of samples with smaller particles decreased more. The logarithmic permeability increased with the increase in the average particle size and void ratio. The permeabilities of MBT waste corresponding to particle size ranges of 0–10, 0–20, and 0–40 mm were 10−10–10−5, 10−8–10−4, and 10−5–10−3 m/s, respectively. The difference between MBT waste and MSW was analyzed in terms of their permeability. The results of MBT waste were compared with those reported in previous studies to provide reference for the permeability analysis of MBT landfills. |
Copyright: | © Zhenying Zhang et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.32 MB
- Informations
sur cette fiche - Reference-ID
10444071 - Publié(e) le:
05.10.2020 - Modifié(e) le:
02.06.2021