Effect of Microwave Pretreatment on the Properties and Microstructure of Low-Concentration Carbon Dioxide Early Cured Cement-Based Materials
Auteur(s): |
Xiao Liang
Maosen Li Lu Wang Shuhua Liu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 27 mars 2024, n. 4, v. 14 |
Page(s): | 1074 |
DOI: | 10.3390/buildings14041074 |
Abstrait: |
The utilization of microwave drying technology has expanded across various sectors due to its rapid processing speed, reduced operation time, lower sample temperatures, and consistent heating. In this research, microwave pretreatment was implemented prior to carbonation curing with low concentrations, and an array of tests including moisture content, compressive strength, carbonation depth, CO₂ absorptivity, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) were utilized to investigate the effect of microwave pretreatment on the properties and microstructure of cementitious materials under early carbonation curing with low CO₂ concentrations. The findings reveal that microwave pretreatment significantly decreases the moisture content within the test specimens, expediting the ingress of CO₂ and improving the compressive strength of the specimens. At the same time, the effectiveness of microwave pretreatment in reducing moisture content diminishes as the pretreatment time increases. The absorption of CO₂ is relatively rapid in the early stage of carbonation curing, with over 50% of the CO₂ absorption occurring within the 0–6 h period of carbonation curing. The hydration products and microstructure of the uncarbonated part inside the specimens are generally consistent with the normal curing state. The formation of CaCO3 contributed to the densification of the specimen by infilling its internal voids, thereby enhancing its compressive strength. Although carbonation curing enlarges the average pore size of the samples, it also serves a filling function, making the samples more compact and reducing the porosity. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.8 MB
- Informations
sur cette fiche - Reference-ID
10773439 - Publié(e) le:
29.04.2024 - Modifié(e) le:
05.06.2024