• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effect of Longitudinal Gradient on 3D Face Stability of Circular Tunnel in Undrained Clay

  1. Davis E. H. (1980), "The stability of shallow tunnels and underground openings in cohesive material" in Géotechnique, v. 30, n. 4, Thomas Telford Ltd., p. 397-416

    https://doi.org/10.1680/geot.1980.30.4.397

  2. Leca E. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material" in Géotechnique, v. 40, n. 4, Thomas Telford Ltd., p. 581-606

    https://doi.org/10.1680/geot.1990.40.4.581

  3. Mollon Guilhem (2010), "Face Stability Analysis of Circular Tunnels Driven by a Pressurized Shield" in Journal of Geotechnical and Geoenvironmental Engineering, v. 136, n. 1, American Society of Civil Engineers (ASCE), p. 215-229

    https://doi.org/10.1061/(asce)gt.1943-5606.0000194

  4. Zhang F. (2018), "Upper-bound solutions for face stability of circular tunnels in undrained clays" in Géotechnique, v. 68, n. 1, Thomas Telford Ltd., p. 76-85

    https://doi.org/10.1680/jgeot.16.t.028

  5. Chen R. P. (2015), "An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils" in Acta Geotechnica, v. 10, n. 5, Springer Science and Business Media LLC, p. 683-692

    https://doi.org/10.1007/s11440-014-0304-5

  6. Galli G (2004), "Three-dimensional modelling of tunnel excavation and lining" in Computers and Geotechnics, v. 31, n. 3, Elsevier BV, p. 171-183

    https://doi.org/10.1016/j.compgeo.2004.02.003

  7. Zhao LianHeng (2017), "Three-dimensional stability analysis of a longitudinally inclined shallow tunnel face" in Computers and Geotechnics, v. 87, Elsevier BV, p. 32-48

    https://doi.org/10.1016/j.compgeo.2017.01.015

  8. Huang Qi (2019), "Face stability analysis for a longitudinally inclined tunnel in anisotropic cohesive soils" in Journal of Central South University, v. 26, n. 7, Springer Science and Business Media LLC, p. 1780-1793

    https://doi.org/10.1007/s11771-019-4133-4

  9. Mollon Guilhem (2013), "Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil" in International Journal for Numerical and Analytical Methods in Geomechanics, v. 37, n. 13, Wiley, p. 2061-2083

    https://doi.org/10.1002/nag.2121

  10. Wang Yuke (2020), "Undrained multi-dimensional deformation behavior and degradation of natural soft marine clay from HCA experiments" in Soils and Foundations, v. 60, n. 1, Elsevier BV, p. 103-114

    https://doi.org/10.1016/j.sandf.2020.01.002

  11. Wang Yuke (2019), "Influence of initial state and intermediate principal stress on undrained behavior of soft clay during pure principal stress rotation" in Acta Geotechnica, v. 14, n. 5, Springer Science and Business Media LLC, p. 1379-1401

    https://doi.org/10.1007/s11440-018-0735-5

  12. Wang Yuke (2020), "The pore pressure and deformation behavior of natural soft clay caused by long-term cyclic loads subjected to traffic loads" in Marine Georesources & Geotechnology, Informa UK Limited, p. 1-10

    https://doi.org/10.1080/1064119X.2019.1707915

  13. KLAR A. (2014), "Energy-based volume loss prediction for tunnel face advancement in clays" in Géotechnique, v. 64, n. 10, Thomas Telford Ltd., p. 776-786

    https://doi.org/10.1680/geot.14.p.024

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10430855
  • Publié(e) le:
    24.08.2020
  • Modifié(e) le:
    24.08.2020