Effect of Gravel-sand Ratio on Physico-mechanical, Thermal and Macrostructural Properties of Micro Epoxy Polymer Concrete based on a Mixture of Alluvial-dune Sand
Auteur(s): |
Zineb Kerrida
Hichem Berkak Zoubir Makhloufi Madani Bederina Ahmida Ferhat |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | The Open Civil Engineering Journal, 18 février 2020, n. 1, v. 14 |
Page(s): | 247-261 |
DOI: | 10.2174/1874149502014010247 |
Abstrait: |
Introduction:In the Polymer Concrete (PC) composites, aggregates are the most important constituent, which considerably affect their performance. The purpose of this experimental study is to examine the effect of Gravel-to-Sand (G/S) ratio on the physico-mechanical, thermal and microstructural properties of epoxy micro-polymer concrete made up of local aggregates. Materials & Methods:The Micro Epoxy Polymer Concrete (MEPC) studied consists of epoxy resin as a binder and a mixture of two types of sands (alluvial (0/0.63 mm) and dune (0/4 mm) sands), as well as crushed limestone gravel (3/8 mm). Six compositions were prepared with two epoxy resin contents (10% and 14% of the total weight of mixture) and three G/S ratios (0.25, 0.50 and 0.75). The studied properties are density, water absorption, compressive and flexural strengths, thermal conductivity, thermal diffusivity, specific heat and macrostructure. Results & Discussion:The obtained results show that the G/S ratio, as well as the epoxy resin content, has a significant influence on the properties of MEPC. In addition, 14% epoxy resin and the G/S ratio of 0.75 can be considered as optimal values, which lead to very interesting physico-mechanical performances (denser and less porous material, more resistant with almost similar thermal conductivity). Moreover, the density, the water absorption and the optical microscopic observation confirm that mixes containing 14% epoxy are more impermeable, compact and homogeneous than those containing 10% epoxy. Conclusion:Finally, it should be noted that the incorporation of aggregates being relatively coarse decreases the grains’ specific surface and reduces the porosity of the granular mix, which enable the epoxy product to completely cover the surface of mineral grains. A perfect covering of aggregate grains with a bender improves the adhesion between the aggregates and the polymer matrix. |
Copyright: | © 2020 Zineb Kerrida et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.23 MB
- Informations
sur cette fiche - Reference-ID
10444018 - Publié(e) le:
05.10.2020 - Modifié(e) le:
02.06.2021