0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effect of Fiber Type and Length on Strength, Fracture Energy, and Durability Properties of Microwave-Cured Fiber-Reinforced Geopolymer Mortars

Auteur(s): ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 14
Page(s): 3723
DOI: 10.3390/buildings14123723
Abstrait:

Microwave curing can be an alternative curing method for geopolymer production. Although many properties of microwave-cured geopolymer composites have been investigated, the effect of microwave curing on the strength and durability properties of fiber-reinforced geopolymers remains a topic that requires investigation. In this study, the effect of fiber type and length on the properties of microwave-cured metakaolin-based geopolymers was investigated. For this purpose, PVA (6, 12 mm) and polymer (15, 30 mm) fibers were utilized. Compressive and flexural strength, fracture energy, abrasion resistance, high-temperature resistance, water absorption capacity and rate of capillary water absorption tests were conducted and the microstructure was examined using scanning electron microscopy. For curing, a household microwave oven was used at a power level of 300 watts. With the fibers’ inclusion, fracture energies could be increased by up to 1150%, ductility was enhanced, flexural strengths were increased and compressive strengths decreased. Moreover, the rate of capillary water absorption decreased by up to 13%, while water absorption values increased by between 5% and 12%. The results suggested that microwave curing could be an alternative curing method for the production of fiber-reinforced geopolymer composites, offering shorter curing times and lower energy consumption.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810365
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    17.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine