0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effect of Chemical Warm Mix Additive on the Properties and Mechanical Performance of Recycled Asphalt Mixtures

Auteur(s): ORCID
ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 7, v. 12
Page(s): 874
DOI: 10.3390/buildings12070874
Abstrait:

Newer technologies such as warm mix asphalt (WMA) and reclaimed asphalt pavement (RAP) have gained international approval and have been considered as appropriate solutions that support the sustainability goals of the highway sector. However, both technologies present some shortcomings. The lower mixing and compaction temperatures of WMA reduce the binder aging and the bond between the aggregates and the coating binder, thus resulting in less rutting resistance and higher moisture susceptibility. On the other hand, RAP mixes tend to be stiffer and more brittle than conventional hot mix asphalt (HMA) due to the effect of aged binder. This tends to increase the crack propagation distresses. In an attempt to overcome their individual shortcomings, this study investigated the new concept of a combined WMA-RAP technology. The chemical WMA additive Rediset LQ1102CE was utilized with mixtures incorporating low (15%), medium (25%), and high (45%) RAP contents. Dynamic modulus (DM) and flow number (FN) tests were conducted to investigate the effect of Rediset on the behavior of RAP mixtures. The dynamic modulus |E*| mastercurves were developed using the sigmoidal model and Franken model was used to fit the accumulated permanent deformation curve. The results of this study showed that Rediset addition improved the cracking resistance of RAP mixtures. However, the rutting resistance was reduced but kept within the acceptable range except for mixtures containing low RAP content.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10688586
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine