0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Effect Mechanisms of Toner and Nano-SiO2 on Early Strength of Cement Grouting Materials for Repair of Reinforced Concrete

Auteur(s):








ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 12
Page(s): 1320
DOI: 10.3390/buildings12091320
Abstrait:

The reinforced concrete invariably involves some diseases (e.g., crack, void, etc.) due to the complex service conditions. These diseases are usually repaired to extend the service life of reinforced concrete by using cement grouting materials. In order to meet a certain color need of reinforced concrete, toner is mixed into the cement grouting materials. However, the toner has a negative effect on the early strength of cement grouting materials. Unfortunately, the mechanism of the negative effects of toner is still unclear, and no effective and targeted measures have been put forward. Hence, the main work of this paper reveals the mechanisms of the toner and nano-SiO₂ (N-S) in the hydration process and the strength generation of the cement grouting materials in the case of different curing ages and nano-SiO₂ contents via the scanning electron microscopy test (SEM), X-ray diffraction test (XRD), differential scanning calorimetry test (DSC), and Fourier transform infrared spectroscopy test (FTRI). Results show that: (a) the toner hinders the generation of AFt and CH crystals (especially for 1-day and 3-day), which delays the hydration process and weakens the early performance of cement grouting materials; (b) the N-S promotes the hydration process and the formation of C-S-H gels, so as to effectively increasing the early strength and reducing (but not eliminate) the adverse effect of toner on cement grouting materials; (c) With the increase of every 1% N-S, the flexural strength of 1-day, 3-day, and 7-day average increased by 11.3%, 2.9%, and 0.9%, respectively, and the compressive strength of 1-day, 3-day, and 7-day average increased by 0.8%, 0.3%, and 0.1%.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10692705
  • Publié(e) le:
    23.09.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine