0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Earthquake Protection of Existing Structures with Limited Seismic Joint: Base Isolation with Supplemental Damping versus Rotational Inertia

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2018
Page(s): 1-24
DOI: 10.1155/2018/6019495
Abstrait:

Existing civil engineering structures having strategic importance, such as hospitals, fire stations, and power plants, often do not comply with seismic standards in force today, as they were designed and built based on past structural guidelines. On the other hand, due to their special importance, structural integrity of such buildings is of vital importance during and after earthquakes, which puts demands on strategies for their seismic protection. In this regard, seismic base isolation has been widely employed; however, the existing limited seismic joint between adjacent buildings may hamper this application because of the large displacements concentrated at the isolation floor. In this paper, we compare two possible remedies: the former is to provide supplemental damping in conventional base isolation systems and the latter consists in a combination of base isolation with supplemental rotational inertia. For the second strategy, a mechanical device, called inerter, is arranged in series with spring and dashpot elements to form the so-called tuned-mass-damper-inerter (TMDI) directly connected to an isolation floor. Several advantages of this second system as compared to the first one are outlined, especially with regard to the limitation of floor accelerations and interstory drifts, which may be an issue for nonstructural elements and equipment, in addition to disturbing occupants. Once the optimal design of the TMDI is established, possible implementation of this system into existing structures is discussed.

Copyright: © 2018 Dario De Domenico et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10176656
  • Publié(e) le:
    30.11.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine