Dynamic Rock-Breaking Process of TBM Disc Cutters and Response Mechanism of Rock Mass Based on Discrete Element
Auteur(s): |
Qinglong Zhang
Yanwen Zhu Canxun Du Sanlin Du Kun Shao Zhihao Jin |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2022, v. 2022 |
Page(s): | 1-10 |
DOI: | 10.1155/2022/1917836 |
Abstrait: |
Rock-breaking efficiency of full-face rock tunnel boring machine (TBM) is closely related to the performance of the disc cutter and the characteristics of the rock mass. In the point of view of mesomechanics, the particle flow code (PFC) is used to establish a numerical model of the rock mass and the disc cutter, and the process of TBM disc cutter intrusion into the rock mass is analyzed. The dynamic response mechanism and crack evolution process of the rock mass under the action of the disc cutter are studied on the basis of micromechanics, and the relationship between the rock mass crack, penetration, and cutting force during the intrusion of the disc cutter is revealed. The sensitivity analysis is carried out on the confining pressure conditions and the influence parameters of the disc cutter spacing. The results show that the rock breaking by disc cutter undergoes the transformation characteristics of compaction, shearing, and tension failure modes, and the failure process of the rock mass is the joint action of tension and shear. In the whole process of rock breaking, the disc cutter has the phenomenon of repeated loading-unloading alternation and leaping rock breaking; after the penetration of the disc cutter reached 9.0 mm, penetration creaks begin to appear on the surface of the rock mass; the penetration was obviously reduced with the increase of confining pressure, and it is mainly the penetration cracks on the surface; after the disc cutter spacing reaches 100.0 mm, there is no penetration crack between the two disc cutters. The research conclusion can provide a reference for the disc cutter optimization design. |
Copyright: | © 2022 Qinglong Zhang et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.66 MB
- Informations
sur cette fiche - Reference-ID
10657357 - Publié(e) le:
17.02.2022 - Modifié(e) le:
01.06.2022