0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Dynamic Response of a Casting Crane Rigid-Flexible Coupling System to High Temperature

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-15
DOI: 10.1155/2020/7945135
Abstrait:

To determine the influence of temperature on the mechanical properties of crane metal structures, three Q355 alloy steel samples were processed and their elastic moduli were tested at different temperatures using a metal tension test bed. The constitutive equation for the elastic modulus of Q355 alloy steel at different temperatures was predicted using test data and a neural network algorithm. Based on crane structural characteristics and the principle of system dynamics, a coupling vibration model was established that included the crane flexible girder, cabin, trolley, crane, and temperature. System motion equations were established according to the Lagrange equation, and the approximate solution of nonlinear system vibration was solved by the direct integration method (the Newmark method). The dynamic characteristics of the main beam and cabin were analyzed at different temperatures, as well as safety during service. The results show that, with increasing temperature, the maximum midspan displacement of the main beam increases gradually, by 14.3%, 21.4%, and 57.1% at temperatures of 300°C, 400°C, and 600°C, respectively. The cabin vibration displacement increases with temperature, by up to 32.5% at 600°C, but the influence of temperature on cabin vibration acceleration is not obvious. It was concluded that the influence of temperature on the dynamic characteristics of the main beam must be considered during the design stage of cranes. The proposed model and analysis method provide a theoretical basis for the design of casting cranes according to temperature.

Copyright: © Yunsheng Xin et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10409155
  • Publié(e) le:
    10.01.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine