Dynamic Interaction Analysis of Maglev-Guideway System Based on a 3D Full Vehicle Model
Auteur(s): |
Dong-Ju Min
Myung-Rag Jung Moon-Young Kim Jong-Won Kwark |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | International Journal of Structural Stability and Dynamics, janvier 2017, n. 1, v. 17 |
Page(s): | 1750006 |
DOI: | 10.1142/s0219455417500067 |
Abstrait: |
The purpose of this paper is to develop a detailed 3D maglev vehicle and guideway model and investigate the dynamic response characteristics of the coupled system. For this, the maglev vehicle is modeled as one cabin and four bogies having eight electromagnetics, four sensors, and four secondary suspensions based on the Urban Transit Maglev (UTM) system in Korea. The 3D dynamic equilibrium equations of the cabin and bogies are derived by considering the actively controlled electromagnetic forces. Also, the equations of motion for the guideway are derived using the modal superposition method for vertical, lateral, and torsional modes. The resulting coupled equations of motion are then solved using a predictor–corrector iterative algorithm. Finally, through the numerical simulation of the developed system, the responses using the 3D maglev vehicle model are compared with those obtained by the corresponding 2D model. The effects of surface irregularity on the dynamic interaction behaviors are then evaluated for increasing vehicle speeds. Particularly, the 3D resonance conditions of the guideway girder and the maglev vehicle are presented considering the resonance conditions due to equidistant moving loads. In addition, some resonance phenomena are rigorously explored, including the lateral resonance by a series of vehicles running on a girder. |
- Informations
sur cette fiche - Reference-ID
10352439 - Publié(e) le:
14.08.2019 - Modifié(e) le:
14.08.2019