Dynamic analysis of the three-phase magneto-electro-elastic (MEE) structures with the finite element method enriched by proper enrichment functions
Auteur(s): |
Yingbin Chai
Kangye Huang Shangpan Wang Qifan Zhang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Smart Materials and Structures, 7 juin 2024, n. 7, v. 33 |
Page(s): | 075023 |
DOI: | 10.1088/1361-665x/ad4cc3 |
Abstrait: |
In this study, a carefully designed enriched finite element method (EFEM) is presented to improve the solution accuracy of the conventional FEM by analyzing the dynamic behavior of the magnetic-electric-elastic (MEE) composite structures, which are frequently used in designing various smart and intelligent devices. By formulating the proper EFEM with ideal numerical performance, different enrichment functions are considered and the corresponding solution quality of different versions of the EFEM is compared and examined in great detail. When the Lagrange polynomial basis functions together with the harmonic trigonometric functions are used as enrichment functions, the obtained EFEM shows extremely powerful and ideal numerical performance, which is obviously better than the other versions of EFEM and the conventional FEM, in studying the free vibration and harmonic frequency responses of the MEE structures. Nearly exact numerical solutions for three-phase physical fields of MEE structures can be generated by the proposed EFEM even if very coarse mesh patterns are used. Intensive numerical studies are conducted to confirm and verify the excellent properties of the proposed EFEM in performing dynamic analysis of the MEE structures. |
- Informations
sur cette fiche - Reference-ID
10783917 - Publié(e) le:
20.06.2024 - Modifié(e) le:
20.06.2024